
RANDOM WALKS TO SAMPLE UNIT QUATERNIONS

RENÉ RÜHR

Abstract. We study a random walk on the space of unit quaternions focusing on effi-
cient implementation on hardware.

1. Introduction

Points on spheres, rotations and quaternions. In this note we study a randomized
variant of the low-discrepancy set on the unit 2-sphere constructed in [LPS86], [LPS87].
While the applied math community is aware of the method of Lubotzky-Phillips-Sarnak, it
is judged difficult to use in [Mit08] since the point sets constructed grow exponentially. The
proposed random walk avoids this disadvantage.

The constructed point sets are actually obtained from the natural maps

H1(R)→ SO3(R)→ S2, q 7→ k 7→ k.e1

where the first map is the two-fold cover of the group of orientation preserving rotations
SO3(R) by the space of unit quaternions H1(R). The unit quaternions on the other hand
can be identified with the unit 3-sphere. A classical method to produce random points on
the 3-sphere is due to Marsaglia [Mar72]. Random rotations are wildly used in computer
graphics, and algorithms have been discussed in [Arv91], [Arv92], [Sho92]. They also be-
come important in machine learning [Ale22], [LSDW22]. For a recent overview for random
rotations, we refer to [YJLM10]. The two dimensional sphere is also important in com-
puter graphics in the advent of ray tracing, see e.g. [PJH23] The current state-of-the-art
low-discrepancy unit quaternions seems to be the Super-Fibonacci spirals [Ale22].

Before we describe the algorithms in the next session we briefly recall the concept of
quaternions. Mathematical proofs are deferred to two appendices.

Unit quaternions. We introduce the space of quaternions

q = r + xi+ yj + zk ∈ H(R)

where x, y, z ∈ R. The vectors i, j, k represent the imaginary units satisfying the multipli-
cation laws

i2 = j2 = k2 = −1, ijk = −1.

By linearity, these rules define a multiplication among quaternions. Using the norm of R4,
the unit quaternions H1(R) are those with

∥q∥2 = r2 + x2 + y2 + z2 = 1

and thus define elements on the 3-sphere S3. Since for two quaternions q1, q2 we have

∥q1q2∥ = ∥q1∥∥q2∥,
1
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the unit quaternions are closed under multiplication and thus provide S3 with a group
structure. It is common to split the real scalar and the 3-dimensional imaginary part of a
quaternion: Let q1 = r1 + v1 and q2 = r2 + v2 then the multiplication rule is

q1q2 = (r1r2 − ⟨v1, v2⟩) + (r1v2 + r2v1 + v1 × v2)

where the ⟨·, ·⟩ denotes the inner product and × denotes the cross product.

2. Random walk on quaternions

2.1. Quasi Monte Carlo method of LPS. Consider the following set of six unit quater-
nions,

S5 =

{
1± 2i√

5
,
1± 2j√

5
,
1± 2k√

5

}
.

Also consider all non-reducible words of length

Sn
5 = {s1...sn : si ∈ S5, si+1 ̸= s−1

i }

Here we use the fact that S5 generates a free group, meaning that there are no additional
relation between the si that cause a word in to collapse to the identity except for the inverses.
Equivalently, the graph defined on the set of words in S5 with adjacency relations w ∼ w′

(meaning there is s ∈ S5 such that w′ = sw) forms a tree of degree 6.
The low discrepancy sequence introduced by LPS is the increasing sequence of balls inside

this tree, i.e. Qn
5 = ⊔k≤mSk

5 .
The associated rotations to S5 are

1

5

1 0 0
0 −3 −4
0 4 −3

 ,
1

5

−3 0 4
0 1 0
−4 0 −3

 ,
1

5

−3 −4 0
4 −3 0
0 0 1


and their inverses. More generally, for any prime p which satisfies p mod 4 = 1 there exist
exactly p+ 1 many integer quaternions of square norm p that will generate a free group of
rank (p+1)/2. More precisely, there are 8(p+1) integer quaternions on the sphere of square
radius p. These come in pair of eights that are permutation in the coordinate coefficients
and a global sign flip.

The next primes after p = 5 satisfying this congruence condition are 13 and 17. The
associated quaternions of norm 13 and 17 are

S13 =
1√
13
{1± i± j ± k, 3± 2i, 3± 2j, 3± 2k}

and

S17 =
1√
17
{1± 4i, 1± 4j, 1± 4k, 3± 2i± 2j, 3± 2j ± 2k, 3± 2k ± 2i}.

2.2. Simple random walk. Here is a quick description of the random walk method using
S5. Fix a starting unit quaternion q0, say q0 = 1. Choose a random element q1 in S5 and
multiply it with q0: q1q0. This is the first random sample. Repeat for each new sample:
Given the current state qn−1qn−2 . . . q1q0, choose a random qn ∈ S5 to obtain the next
sample

qnqn−1qn−2 . . . q1q0.

The pseudo-code is given in Algorithm 1.
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Algorithm 1 Random quaternions (Simple random walk)

1: Initialization: Lookup table S5 // An array of six 4-dimensional vectors
2: Input: Current state qcurrent
3: Output: Sample q in H1(R)
4: procedure Simple Random walk
5: i← random(0, 5) // Random number in {0, 1, 2, 3, 4, 5}
6: si ← S5[i]
7: q ← siqcurrent
8: return q
9: end procedure

Algorithm 2 Random quaternions (Biased simple random walk)

1: Initialization: Lookup table S′
5 = [s1, s2, s3, s4, s5, s6, s1, s2]

2: Input: Current state qcurrent
3: Output: Sample q in H1(R)
4: procedure Biased simple random walk
5: i← random(0, 7)
6: si ← S′

5[i]
7: q ← siqcurrent
8: return q
9: end procedure

2.3. Biased walk. A slight nuisance that these numbers are not powers of two, where
modulo calculation will be cheaper. Coming back to S5, we can modify the algorithm by
building a lookup table Sbiased

5 of size 8 where the last 2 elements are some duplicates of
S5. Taking a random element from this new array is equivalent of doing the random walk
with biased weights. This walk will still give a sequence which asymptotically converges
to the uniform measure on H1(R). The primes (1 mod 4) below some power of two are
5, 13, 29, 61, 113, 241, 509.

Algorithm 3 Random quaternions (Nonbacktracking random walk)

1: Initialization: Lookup table S′′
5 = [s1, s2, s3, s

−1
1 , s−1

2 , s−1
3 ]

2: Input: Current state qcurrent and last choice j
3: Output: Sample q in H1(R)
4: procedure Nonbacktracking random walk
5: i← (j + 4 + random(0, 4)) mod 6
6: si ← S′′

5 [i]
7: q ← siqcurrent
8: return q
9: end procedure

2.4. Nonbacktracking walk. For small primes p, there is a high probability of seeing the
same element that one saw two time steps ago. One can avoid this by restricting to non-
backtracking paths. We again start with at a point q0. and move with equal probability to
any of the 6 neighbors q1q0 for q1 ∈ S5. For the next move, we restrict to q2 ̸= q−1

1 , the
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non-backtracking condition. This will hold for all future times n + 1 as well: qn+1 ̸= q−1
n .

The set of non-backtracking paths of length n starting at q0 is denoted by Sn
5 q0.

The non-backtracking walk will have to save the last step in its internal state. By using
an ordering {si} of the elements in S5 in which the inverse of si is s(i+3)mod6, we can easily
sample from the elements i+ 4 + {0, 1, 2, 3, 4} mod 6 that won’t take a step back.

Algorithm 4 Random quaternions (Randomized Quasi-Monte Carlo)

1: Initialization: Lookup table S5 and Q2
13

2: Output: Sample q in H1(R)
3: Internal State: MC state qcurrent and QMC-index k.
4: procedure rqmc
5: if k = 196 then
6: i← random(0, 6)
7: k ← 0
8: si ← S5[i]
9: qcurrent ← siqcurrent

10: return qcurrent
11: else
12: qi ← Q2

13[k]
13: k ← k + 1
14: return qiqcurrent
15: end if
16: end procedure

2.5. Randomized Markov Monte Carlo. So far we discussed the quasi-Monte Carlo
method of LPS and discussed a Markov Chain Monte Carlo version by walking the tree
randomly. One can combine both methods, by taking the replicated QMC sequences that
are translated by some random amount. This allows to use confidence intervals from the
random part but keep the error that of a QMC sequence. A survey of randomized QMC
can be found in [Owe98].

For example, we can walk according to the laws of S5 and at each step, take the QMC
sequence Q2

13 = S13 ⊔ S2
13. Note that the cardinality of Q2

13 is 14 + 14 ∗ 13 = 196. The
advantage of using two different primes is to avoid cancellations between the MC and QMC
part.

2.6. Parallel Quasi Monte Carlo with shared memory. Suppose we wish to produce
lots of samples on a parallel compute system. There is not a straight forward implementation
of the random walk method without an explicit formula for the nth word given a list of
choices (other than naive multiplication). Further, random walks of short length starting
at the same position will produce the same elements.

To accommodate this difficulty, we first produce Sm
5 store it in shared memory. We then

produce samples by randomly calculating elements from Sm
5 . Here we use m = 4 (750

elements). We set serves as pool for random elements. Its relative large size ensures that
there are not many common paths. Now each kernel will walk the walk individually. We
skip the first three elements to ensure that a set of one million threads has 500 million
different starting points.
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Algorithm 5 Random quaternions (Parallel Quasi-Monte Carlo)

1: Initialization: S5, Shared memory S4
5

2: Input: i (Kernel id)
3: Output: Length k-array Q of quaternions per kernel
4: procedure Initialize shared memory
5: i5 ← i/5
6: i25 ← i5/5
7: i125 ← i25/5
8: S4

5 [i]← 1
9: Barrier

10: j ← i125
11: S4

5 [i] = S5[j mod 6] ∗ S4
5 [i]

12: Barrier
13: j ← j + 4 + i25 mod 5
14: S4

5 [i] = S5[j mod 6] ∗ S4
5 [i]

15: Barrier
16: j ← j + 4 + i5 mod 5
17: S4

5 [i] = S5[j mod 6] ∗ S4
5 [i]

18: Barrier
19: q[i]← S4

5 [random(0, 750)] ∗ S4
5 [random(0, 195)]

20: end procedure
21: procedure Parallel qmc
22: for l in 1...k do
23: q[i]← S4

5 [random(0, 750)] ∗ q[i]
24: Q[i, k]← q[i]
25: end for
26: end procedure

Naturally, the more elements each kernel produces in a loop, the better the offset of the
initial cost to initialize the shared memory. To avoid modulus calculation, we could fill an
array as large as the next power of two by adding elements from the next sphere in the tree.
This can easily be done by initializing the shared memory with

shared_memory[i] = i < 750 ? 1 : S_5[0].

Appendix A: On the the theorem of Lubotzky-Phillips-Sarnak

The method of LPS is summarized well in the Bourbaki Seminar [CdV88] and discussed
in book form in [Lub94b], [Sar90] from different point of views. Some further studies on the
discrepancy can be found in [CF97]. Here we present the relevant theorems for this note.

Let G be a group acting via isometries on a metric space X. Let S ⊂ G be a finite
subset of G. Suppose X is endowed with a probability measure µ left invariant by G. Let
L2(X) be the Hilbert space of square integrable functions on X with respect to µ. Define
the averaging operator TS on L2(X) by

TSf(x) =
1

|S|
∑
γ∈S

f(γ.x).
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Then the operator norm ∥TSp − id∥ where id : f 7→ f will measure how fast iterates Tn
Sp
f

converge to µ(f) for any square-integrable f in L2-norm.
Now specify G = SO3(R), X = S2 = SO3(R)/ SO2(R), µ the normalized Lebesgue

measure on S2.
Let p be a prime congruent to 1 mod 4. Consider those integer quaternions H(Z) whose

square norm equals p. There are 8(p+1) of those. Of those, p+1-many have their real part
odd and positive. Normalize these elements to be unit quaternions. Denote the set of such
elements by Sp:

Sp =

{
q
√
p

: q = r + xi+ yj + zk ∈ H(Z), r2 + x2 + y2 + z2 = p, r = 1(2), r > 0

}
Every unit quaternion defines a rotation via by Adjoint representation of SU(2). We identify
Sp with its image under this representation. Then, for example, S5 corresponds to rotations
around the x, y, z axis with an angle of acos(− 2

5 ) ≃ 2.21 radians.
The associated operator TSp

is known as Hecke operator. The main result of Lubotzky-
Philips-Sarnak is the following spectral bound of the Hecke operator, which remarkably
enough follows from Deligne’s resolution of the Weil conjecture on the Riemann hypothesis
over finite fields.

Theorem 2.1 ([LPS86], Theorem 1.3).

∥TSp − id∥L2(X) =
2
√
p

p+ 1

The set Sp is symmetric, i.e. if γ ∈ Sp then γ−1 ∈ Sp. Most importantly, Sp generates

a free subgroup Γp inside SO3(R) of rank p+1
2 . Thus, the associated Cayley graph with

generators Sp defined by the node set Γp and adjacency relations g ∼ h if g = γh for some
γ ∈ Sp is a tree. In particular, TSp

projects from the random walk on this tree. By a
theorem of Kesten [Kes59], the second largest eigenvalue of the Markov operator is at least
2
√
p+ 1 which is the lower bound in Theorem 2.1.
Theorem 2.1 can be generalized twofold. First, let let Sn

p denote the set of reduced words
in the alphabet Sp of length n. Equivalently, this is the sphere of radius n inside the Cayley
graph. The cardinality of this set is N = (p+ 1)pn−1.

Secondly, we can lift Tp and more generally the Hecke operator associated to Sn
p to

SO3(R): For f ∈ L2(SO3(R)),

TSn
p
f(g) =

1

|Sn
p |

∑
γ∈Sn

p

f(γg).

Here SO3(R) is equipped with the normalized Haar measure.

Theorem 2.2 ([Sar90], Section 2.6). Let N = |Sn
p |.

∥TSn
p
− id∥L2(SO3(R)) = O

(
logN

N
1
2

)
This Theorem 2.1 implies the following low-discrepancy theorem.

Theorem 2.3 ([LPS86], Theorem 2.1; [CdV88], Theorem D). Let N = |Sn
p |. Suppose

D ⊂ S2 has a C1 boundary. Then for any x0 ∈ S2,∣∣∣∣ 1N |{γ ∈ Sn
p : γ.x0 ∈ D}| − area(D)

4π

∣∣∣∣ = O(
logN

N
1
3

)



RANDOM WALKS TO SAMPLE UNIT QUATERNIONS 7

Conjecturally, this bound can be improved to be O(N− 1
2−ε) ([LPS86][Conjecture 2.4]).

Lattice method of the LPS theorems. In [LPS87] the lattice method for the analysis of
Hecke operators is introduced. This allows to give a very quick proof for Theorem 2.1 and
Theorem 2.2 which we now outline. The group of unit quaternions modulo its center defines
an algebraic group G such that G(R) ≃ SO3(R) and G(Qp) ≃ PGL2(Qp). Here Qp denote
the p-adic numbers. There is a cover of SO3(R) (modulo the finite group of permutations) by
the S-adic space X = G(Z[ 1p ])\G(R)×G(Qp), see [Lub94a]. The fiber is the compact group

Kp = G(Zp) where Zp denote the p-adic integers. Moreover, at every point x, the orbit of
G(Qp).x is a tree. The Hecke operator Tp can be lifted from L2(SO3(R)) to L2(X). There,
it acts by convolution with the characteristic function χ of the set ⊔γ∈Sp

Kpγ = KpaKp

where a = diag (p, 1) ∈ PGL2(Qp). This set correspond to the first sphere of the tree. More
generally, ⊔γ∈Sn

p
Kpγ = Kpa

nKp. The spectral gap of Tp then translates directly into decay

of matrix coefficients for the action of a, which is bounded by ∼ 1√
p [COU01].

Appendix B: Law of large numbers and a central limit theorem

The L2 bounds on the Hecke operators imply analogous bounds for the L∞ norm, see
[GM03], [CU04]. Thus, there exists θ > 0 such that for every g, every Lipschitz function f
on SO3(R), ∣∣Tn

p (f)(g)− µ(f)
∣∣ = Of (θ

n)

and a similar bound holds for TSn
p
instead of Tn

p .

We wish to show the law of large numbers for the sum of random variables f(γk . . . γ1g):

Yn(γ1, . . . , γn) :=
1

n
(f(γ1g) + f(γ2γ1g) + · · ·+ f(γn . . . γ1g))

where γi is chosen uniformly from Sp \ {γi} (non-backtracking random walk) or uniformly
among Sp (simple random walk).

For brevity, we restrict now to the simple random walk. Let ν be the uniform measure
on Sp. This is the law of the walk. The space of all paths is S⊗N

p carrying the Bernoulli

measure β = ν⊗N. The expectation E of Yn with respect to β is

E[nYn] =
1

(p+ 1)n

∑
γ1,...,γn

Yn(γ1, . . . , γn) = Tf(g) + T 2f(g) + · · ·+ Tnf(g)

Applying the above operator bound,

E[Yn] = µ(f) +O(n−1)

since the error term sum to a geometric series bounded by a constant. Analogously one
shows that the variance behaves like Var[Yn] = (µ(f2)− µ(f)2)n−1 +O(n−2), using that if
k > ℓ then T k

p (f)T
ℓ
p(f) = T ℓ

p(fT
k−ℓf).

The pointwise convergence of Tn
p implies that for any continuous function f , and any

Tp-invariant probability measure on µ′ on SO3(R), we have µ′(f) = µ(f). It follows from
Breiman’s Law of Large Numbers Theorem for Markov chains [Bre60], see also [BQ16][Section
3.2], which applies to both the simple random walk and the non-back tracking walk:

Yn → µ(f).

We also deduce the central limit theorem, see [DS23], writing β = P,

P

[
Yn − E[Yn]√

Var[Yn]
∈ (a, b)

]
→ 1√

2π

ˆ b

a

e−t2/2dt.
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By the previous estimates, the fraction in the LHS is
√
n(YN − µ(f)) which gives the usual

form of the CLT. We note that related aspects of equidistribution properties of quaternions
have been studied in [EMV13], [Kha17] and [Wie19].

Convergence of the biased walk. The spectral gap for the uniform averaging operator
implies the spectral gap for small biases from general perturbation theory [Kat13]. Rigidity
of the underlying group action implies spectral gap for arbitrary positive weights, [FS99].
Convergence can also directly deduced from the recent breakthrough of Benoist-Quint in
their study of stationary measures for Lie group action on homogeneous spaces [BQ13].
They show that given a Lie group G and a lattice Γ in G (i.e. a closed discrete subgroup
such that G/Γ has finite volume using the measure induced from Haar on G), a law µ
supported on G such that the support of µ is dense in G. Then for any x ∈ G/Γ, then for
almost every choice of g1, g2,..., where gi is sampled according to i.i.d. sampled from µ ,

1

n

n∑
k=1

δgk...g1.x → mG/Γ.

Here, almost every choice means almost surely with respect to the Bernoulli measure µ⊗N.
This theorem holds true more generally for S-adic group, in particular for G(Z[ 1p ]) acting

on X as defined above. This shows that the biased random walk converges. Recently, a
Markov Chain version of the theorem of Benoist-Quint has been obtained [PS20]. While
that paper only deals with real Lie group, the S-adic case is likely to hold. This would
imply convergence of the biased non-backtracking walk.
Acknowledgement. The author thanks Omri Sarig, Barak Weiss and Miri Ben-Chen help-
ful references. This work was supported by the ISF 264/22 during his time at the Weizmann
Institute of Science. The author is greatful to Omri Sarig for his hospitality.
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