Cut-and-Project Quasicrystals: Patch Frequency and Moduli Spaces

René Rühr¹ Yotam Smilansky² Barak Weiss³

¹Weizmann Insitute of Science, Israel ²Rutgers University, USA ³Tel-Aviv University, Israel

Outline

1 Point sets in the plane

Delone sets Cut-and-Project sets Patch Frequency

2 Spaces of quasicrystals

Construction of MS Solidarity Theorem Towards Classification Restriction of Scalars Ammann - Beenker Demo

3 Siegel and Rogers formulas

Siegel Formula Integrability of Siegel Transform Rogers Formula

DEFINITION: DELONE SET

Let (X, d) be a metric space. A point set $\Lambda \subset X$ is called **Delone** if

- Λ is uniformly discrete $\exists r > 0$ such that $B_r(x) \cap \Lambda = \{x\}$ for all $x \in \Lambda$
- Λ is relatively dense $\exists R > 0$ such that $B_R(0) + \Lambda$ covers X.

A local criterion for regularity of a system of points.

DEFINITION: *T***-PATCH**

A point set $\mathcal{P}(x, T) = \Lambda \cap B_T(x)$ for $x \in \Lambda$ is called *T*-patch.

DEFINITION: T-PATCH

A point set $\mathcal{P}(x, T) = \Lambda \cap B_T(x)$ for $x \in \Lambda$ is called *T*-patch.

THM(DELONE, DOLBILIN, SHTOGRIN, GALIULIN;'76)

Let $\Lambda \subset \mathbb{R}^d$ be Delone. There exists $T_0 > 0$ such that if all T_0 -patches are equivalent up to isometry then there exists a lattice $\Gamma < \text{lsom}(\mathbb{R}^d)$ and $x \in \Lambda$ s.t.

$$\Lambda = \Gamma x.$$

Same paper: \mathbb{S}^n , \mathbb{H}^n .

MEYER'S DEFINITION OF A QUASICRYSTAL

A Delone set $\Lambda \subset \mathbb{R}^d$ is called Meyer if $\Lambda - \Lambda \subset \Lambda + E$ for $E \subset \mathbb{R}^d$ finite.

This generalizes lattices:

- If E is trivial, Λ is a lattice.
- Λ is Meyer if and only if Λ and $\Lambda \Lambda$ are Delone. (Lagarias)

EMBEDDING THEOREM (MEYER '72)

Any Meyer set is a subset of a cut-and-project quasicrystal.

DEFINITION: CUT-AND-PROJECT SCHEME

The data $(\mathcal{L}, \mathbb{R}^d, \mathbb{R}^m)$ defines a cut-and-project scheme if \mathcal{L} is a lattice in the group $\mathbb{R}^d \times \mathbb{R}^m$ $\pi = \pi_{\mathbb{R}^d}, \pi_{int} = \pi_{\mathbb{R}^m}$ natural projections satisfy (I) $\pi|_{\mathcal{L}}$ is injective (D) $\pi_{int}(\mathcal{L})$ is dense in \mathbb{R}^m .

DEFINITION: WINDOW AND CUT-AND-PROJECT SETS

Window $\mathcal{W} \subset \mathbb{R}^m$ bounded and define the cut-and-project set

$$\Lambda(\mathcal{W},\mathcal{L}) = \pi\left(\mathcal{L}\cap\left(\mathbb{R}^d\times\mathcal{W}\right)\right)$$

If ${\mathcal W}$ has non-empty interior, call it cut-and-project quasicrystal. It is Meyer.

(**Regular**) boundary of \mathcal{W} has zero measure For any *T*-patch $\mathcal{P} = \mathcal{P}(y, T) = \Lambda \cap B_T(y)$ define

$$\operatorname{freq}_{\Lambda}(\mathcal{P}) = \lim_{t \to \infty} \frac{\#\{x \in \Lambda \cap B_t(0) : \mathcal{P}(x, T) \sim_{\mathbb{R}^d} \mathcal{P}\}}{t^d}.$$

For any *T*-patch $\mathcal{P} = \mathcal{P}(y, T) = \Lambda \cap B_T(y)$ define

$$\operatorname{freq}_{\Lambda}(\mathcal{P}) = \lim_{t \to \infty} \frac{\#\{x \in \Lambda \cap B_t(0) : \mathcal{P}(x, T) \sim_{\mathbb{R}^d} \mathcal{P}\}}{t^d}$$

THEOREM ON PATCH FREQUENCY ASYMPTOTICS

Fix d + m = n, d > 2. There exists $\kappa > 0$ such that for a **random** cut-and-project quasicrystal Λ of $(\mathcal{L}, \mathbb{R}^d, \mathbb{R}^m)$ of \mathbb{K} -type SL_k or Sp_k we have

 $\#\{x \in \Lambda \cap B_t(0) : \mathcal{P}(x, T) \sim_{\mathbb{R}^d} \mathcal{P}\} = \mathsf{freq}_{\Lambda}(\mathcal{P})t^d + \mathcal{O}(t^{d-\kappa}).$

1 Point sets in the plane

Delone sets Cut-and-Project sets Patch Frequency

2 Spaces of quasicrystals

Construction of MS Solidarity Theorem Towards Classification Restriction of Scalars Ammann - Beenker Demo

3 Siegel and Rogers formulas

Siegel Formula Integrability of Siegel Transform Rogers Formula

CONSTRUCTION OF MARKLOF AND STRÖMBERGSSON

- $\Lambda = \Lambda(\mathcal{L}, \mathcal{W})$ cut-and-project quasicrystal of $(\mathcal{L}, \mathbb{R}^d, \mathbb{R}^m)$
- Suppose L = gZⁿ ∈ X_n = SL_n(ℝ) / SL_n(Z) for g ∈ SL_n(ℝ) and consider SL_d(ℝ) < SL_n(ℝ) top-left block.
- $\overline{\operatorname{SL}_d(\mathbb{R})\mathcal{L}} = L'\mathcal{L}$ for some $L' < \operatorname{SL}_n(\mathbb{R})$ (Ratner)

The space of quasicrystals associated to $\ensuremath{\mathcal{L}}$

$$\mathfrak{Q} = \{\Lambda(y, \mathcal{W}) : y \in L'\mathcal{L}\}$$

with probability measure $\mu_{\mathfrak{Q}}$ (push forward of $m_{L'\mathcal{L}}$ under $y \mapsto \Lambda(y, \mathcal{W})$).

MS actually consider $ASL_d(\mathbb{R})$ -orbit closure. See also El-Baz for Adelic case.

For $m_{\mathcal{L}'\mathcal{L}}$ -a.e. y defines a cut-and-project scheme i.e. it holds (I) $\pi|_{\mathcal{L}}$ is injective (D) $\pi_{int}(\mathcal{L})$ is dense in \mathbb{R}^m . The space of quasicrystals associated to $\mathcal L$

$$\mathfrak{Q} = \{ \Lambda(y, \mathcal{W}) : y \in L'\mathcal{L} \} \subset \mathfrak{C}(\mathbb{R}^d)$$

where $\mathfrak{C}(\mathbb{R}^d)$ is the space of closed sets on \mathbb{R}^d equipped with the Chaubauty-Fell metric,

$$d(\Lambda_0,\Lambda_1) = \max\left(1, \inf_{\varepsilon}\left(\Lambda_i \cap B_{\frac{1}{\varepsilon}}(0) \subset \Lambda_{1-i} + B_{\varepsilon}(0); \ i = 0, 1\right)\right)$$

PROPOSITION

$$\Psi: X_n = \operatorname{SL}_n(\mathbb{R}) / \operatorname{SL}_n(\mathbb{Z}) \to \mathfrak{C}(\mathbb{R}^d), \quad \mathcal{L} \mapsto \Lambda(\mathcal{L}, \mathcal{W})$$

is Borel, and continuous when $\pi_{int}(\mathcal{L}) \cap \partial \mathcal{W} = \emptyset$.

Chabauty-Fell topology

The space of quasicrystals associated to $\mathcal L$

$$\mathfrak{Q} = \{\Lambda(y, \mathcal{W}) : y \in L'\mathcal{L} = \overline{\mathsf{SL}_d(\mathbb{R})\mathcal{L}}\} \subset \mathfrak{C}(\mathbb{R}^d)$$

PROPOSITION

$$\Psi: X_n = \operatorname{SL}_n(\mathbb{R}) / \operatorname{SL}_n(\mathbb{Z}) \to \mathfrak{C}(\mathbb{R}^d), \quad \mathcal{L} \mapsto \Lambda(\mathcal{L}, \mathcal{W})$$

is Borel, and continuous when $\pi_{int}(\mathcal{L}) \cap \partial \mathcal{W} = \emptyset$.

SIEGEL-VEECH THEOREM OF MS14

If $\mathcal W$ is regular then $m_{L'\mathcal L}(\pi_{\mathrm{int}}(\mathcal L)\cap\partial\mathcal W
eq\emptyset)=0$

COROLLARY

 $\mu_{\mathfrak{Q}} = \Psi_* m_{L'\mathcal{L}}$ is a Borel probability and Ψ_* is continuous at $m_{L'\mathcal{L}}$.

Solidarity Theorem

Suppose μ on $\mathfrak{C}(\mathbb{R}^d)$ is $SL_d(\mathbb{R})$ -ergodic probability gives positive mass on cut and project sets with regular windows. Then $\mu = \mu_{\mathfrak{Q}}$ for some \mathfrak{Q} . In particular, there is a single internal space and window that give rise to its support.

PROOF.

By the Howe-Moore Theorem, μ is g_t ergodic (g_t one-parameter diagonalizable subgroup) By the Birkhoff Ergodic Theorem, for μ a.e. Λ

$$\frac{1}{T}\int_0^T (g_t)_*\delta_\Lambda dt \to \mu$$

By the Howe-Moore Theorem, μ is g_t ergodic (g_t one-parameter diagonalizable subgroup) By the Birkhoff Ergodic Theorem for $\mu = 0$

By the Birkhoff Ergodic Theorem, for μ a.e. Λ

$$rac{1}{T}\int_0^T (g_t)_*\delta_\Lambda dt o \mu$$

By invariance of $U = G_{g_t}^+$ and Fubini's theorem, a.e. Λ , m_U -a.e. $u \in U$, $u.\Lambda$ is Birkhoff generic.

Hence for $\Omega \subset U$ compact, non-empty interior

$$\frac{1}{T}\int_0^T\int_{\Omega}(g_t u)_*\delta_{\Lambda}dm_Udt \to \mu$$

PROOF.

For μ -a.e. Λ

$$\frac{1}{T}\int_0^T\int_{\Omega}(g_t u)_*\delta_{\Lambda}dm_Udt \to \mu$$

Take such a generic $\Lambda = \Lambda(\mathcal{L}_{\Lambda}, W) = c\Lambda(\mathcal{L}, \frac{1}{c}W)$ for some unimodular $\mathcal{L} < \mathbb{R}^n$ and regular window $W < \mathbb{R}^m$. Consider the same ergodic average, but on $SL_n(\mathbb{R})/SL_n(\mathbb{Z})$ replacing Λ with \mathcal{L} .

It converges to some homogeneous measure $m_{L'\mathcal{L}}$ by a theorem of Shah!

Since any such $m_{L'\mathcal{L}}$ is a continuity point for Ψ_* by previous corollary, also the original ergodic average converges to $\Psi_*m_{L'\mathcal{L}}$.

THEOREM I

Write $Y = \overline{SL_d(\mathbb{R})g SL_n(\mathbb{Z})} = L'\mathcal{L} = gLSL_n(\mathbb{Z})$. Then *L* is isogeneous to the real points of an almost \mathbb{Q} -simple linear algebraic group \mathbb{L} .

THEOREM II

 \mathbb{L} is isogeneous (over \mathbb{C}) to either a product of $SL_k(\mathbb{C})$ s or $Sp_k(\mathbb{C})$ s.

WHAT WE REALLY NEED

What \mathbb{Q} -groups do really appear? For the remainder of this talk: $\mathbb{L} = \operatorname{Res}_{\mathbb{K}|\mathbb{Q}}(SL_d)$ (I) $\pi|_{\mathcal{L}}$ is injective (D) $\pi_{int}(\mathcal{L})$ is dense in \mathbb{R}^m .

(I) AND (D) IMPLIES (L) LEMMA

A vector space $V < \mathbb{R}^n$ is called \mathcal{L} -rational if $V \cap \mathcal{L}$ is a lattice in V.

The following implications hold.

a. (D) $\Rightarrow \mathbb{R}^d$ is not contained in a proper \mathcal{L} -rational subspace. b. (I) $\Rightarrow \mathbb{R}^m$ contains no non-trivial \mathcal{L} -rational subspace.

Define

- (irred) There exists no proper \mathcal{L} -rational subspace of \mathbb{R}^n that is $SL_d(\mathbb{R})$ -invariant
 - \mathfrak{c} . (I) and (D) \Rightarrow (irred).

- Shah '91: L minimal Q-group generated by unipotents containing H' = g⁻¹ SL_d(ℝ)g
- L is semi-simple: Let U denote the (unipotent) radical of L.
 By Shah it is also defined over Q.
- V^U is a rational subspace by Zariski density of U(Q). Cannot be by previous lemma, so it must be trivial.
- Since U unipotent it does have an invariant subspace, so it U must be trivial.

- Decompose L into Q-simple factors T_j which we further split in R-simple factors S_j.
- Need to show that $H' = g^{-1} \operatorname{SL}_d(\mathbb{R})g < S_i = \mathbb{S}_i(\mathbb{R})$ for some *i*.
- Decompose \mathbb{R}^n into irreducible representations of H', i.e. $\mathbb{R}^n = g^{-1}\mathbb{R}^d \oplus g^{-1}\mathbb{R}^m$.
- Project H' to S_j , call it H'_j . $\mathcal{I} = \{i : H'_i \neq e\}$. Let $L_{H'} = \prod_{i \in \mathcal{I}} S_i$. Contains H'.
- Let V_i isotypical reps of $L_{H'}$, assume $g^{-1}\mathbb{R}^d < V_1$. Then H' is inside intersection of kernels of $L_{H'}|_{V>1}$.
- Intersection of these kernels is a normal subgroup of $L_{H'}$ hence equal to some subproduct of S_i , $i \in \mathcal{I}$, contains H', so it is all of $L_{H'}$. Hence $V_{>1}$ trivial rep.

$\overline{\mathsf{SL}_d(\mathbb{R})g\,\mathsf{SL}_n(\mathbb{Z})} = L'\mathcal{L} = g\mathbb{L}(\mathbb{R})\,\mathsf{SL}_n(\mathbb{Z}).$ Claim: \mathbb{L} is \mathbb{Q} -simple

- Need to show that $H' = g^{-1} \operatorname{SL}_d(\mathbb{R})g < S_i = \mathbb{S}_i(\mathbb{R})$ for some *i*. So far: $\mathbb{R}^n = V_1 \oplus W$ where *W* trivial rep of $L_{H'}$ and $g^{-1}\mathbb{R}^d < V_1$.
- $H'_i = \pi_{S_i}(H')$, H'_i also preserve $g^{-1}\mathbb{R}^d$ (argument using regular elements $h = \prod h_i$).
- Assume $h_1 \in H'_2$ action on $g^{-1}\mathbb{R}^d$ non-trivial, take some h_1 -invariant proper subspace V'' of $g^{-1}\mathbb{R}^d$.
- Since H'_{>1}-invariant, must be trivial w.r.t H'_{>1} ≃ SL_d(ℝ). Use here that: 1) simplicity 2) classification of reps of SL_d(ℝ)
 3) and that dim of V'' is < d.
- Get non trivial kernels in $S_{>1}$, so kernels equal to S_j and S_j act trivally on V'' and hence on $V''' = \text{span}(S_1V'')$.
- So V''' is $L_{H'}$ -invariant. But note that since $H' < L_{H'}$, $L_{H'}$ acts irred on V_1 , hence $V_1 = V'''$.

• Hence $S_{>1}$ acts trivial on V_1 , hence on \mathbb{R}^n by previous slide. Hence $S_{>1}$ didn't exist in the first place (definition if \mathcal{I}), and $H' < S_1$.

THEOREM (TAMAGAWA)

If \mathbb{L} is almost \mathbb{Q} -simple and simply connected, there exists a field \mathbb{K} and an absolutely almost simple simply connected group \mathbb{G} defined over \mathbb{K} such that $\mathbb{L} \simeq_{\mathbb{Q}} \operatorname{Res}_{\mathbb{K}/\mathbb{Q}}(\mathbb{G})$.

THEOREM (MORRIS-WITTE IN APPENDIX OF SOLOMON-WEISS '14)

If \mathbb{G} as above contains a conjugate of the top left $SL_d(\mathbb{C})$ then \mathbb{G} is either of type A_k or C_k .

Let \mathbb{K} be a number field. Let \mathbb{G} be a \mathbb{K} -group. Then there is a \mathbb{Q} -group $\operatorname{Res}_{\mathbb{K}|\mathbb{Q}}(\mathbb{G})$ such that if $\sigma_i : \mathbb{K} \to \mathbb{C}$ fields embeddings then

$$\mathsf{Res}_{\mathbb{K}|\mathbb{Q}}(\mathbb{G})(\mathbb{Q}) = \{\sigma_1(g), \dots, \sigma_d(g) : g \in \mathbb{G}(\mathbb{K})\}$$

(similarly, with \mathbb{Z} and \mathcal{O} replacing \mathbb{Q} resp. \mathbb{K}) For any field \mathbb{K}' containing all $\sigma_i(\mathbb{K})$,

$$\mathsf{Res}_{\mathbb{K}|\mathbb{Q}}(\mathbb{G})(\mathbb{K}') = \prod \mathbb{G}^{\sigma_i}(\mathbb{K}').$$

Concretely,
$$\mathbb{K} = \mathbb{Q}(\sqrt{2})$$
, $\mathbb{G} = SL_2(\mathbb{C})$.
 \mathbb{K} is a \mathbb{Q} vectorspace. In fact algebra.
 $\phi: a + b\sqrt{2} \mapsto \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \in Mat_2(\mathbb{Q})$
 $AD - BC = 1 \quad \begin{bmatrix} A & B \\ C & D \end{bmatrix} \mapsto \begin{bmatrix} \phi(A) & \phi(B) \\ \phi(C) & \phi(D) \end{bmatrix} \in SL_4(\mathbb{C})$
Image of ϕ can be simulatenously diagonalized (over \mathbb{K}), $\phi(z)$ has
Eigenvalues $z = \sigma_1(z)$, $\overline{z} = \sigma_2(z)$.

Applying this diagonalization, and a permutation matrix,

$$\begin{bmatrix} \phi(A) & \phi(B) \\ \phi(C) & \phi(D) \end{bmatrix} \mapsto \begin{bmatrix} \sigma_1(A) & \sigma_1(B) & & \\ \sigma_1(C) & \sigma_1(D) & & \\ & & \sigma_2(A) & \sigma_2(B) \\ & & & \sigma_2(C) & \sigma_2(D) \end{bmatrix} \in \mathsf{SL}_2^{\sigma_1}(\mathbb{C}) \times \mathsf{SL}_2^{\sigma_2}(\mathbb{C})$$

- Field embeddings $\sigma_i : \mathbb{K} \to \mathbb{R}$, extend to $\mathbb{K}^k \to \mathbb{R}^k$.

•
$$\mathcal{L} = \{(\sigma_1(v), \dots, \sigma_D(v)) : v \in \mathcal{O}^k\} < \mathbb{R}^{Dk}$$
 lattice

EXAMPLE: VERTICES OF AMMANN-BEENKER TILING

$$\begin{split} \mathbb{K} &= \mathbb{Q}(\sqrt{2}), \ k = 2 \ \text{then consider} \\ \{(\sigma_1(v), \sigma_2(v)) : v \in \mathbb{Z}[\sqrt{2}]^2\} < \mathbb{R}^4 \ \text{with basis} \\ \begin{bmatrix} 1 & 0 & \sqrt{2} & 0 \\ 0 & 1 & 0 & \sqrt{2} \\ 1 & 0 & -\sqrt{2} & 0 \\ 0 & 1 & 0 & -\sqrt{2} \end{bmatrix} \\ \text{Ammann-Beenker: } \mathcal{L} \ \text{finite index sublattice of above (s.t.} \\ v_1 - v_2 \in \sqrt{2}\mathbb{Z}[\sqrt{2}]). \\ d = m = 2 \\ \mathcal{W} = \text{Octagon.} \end{split}$$

See Baake-Grimm or Hammarhjelm.

Ammann - Beenker

Demo

 $f \in C_c(\mathbb{R}^d)$. Define the Siegel-Veech transform, for $\Lambda \in \mathfrak{Q}$,

$$\hat{f}(\Lambda) = \sum_{v \in \Lambda - \{0\}} f(v)$$

SIEGEL-VEECH FORMULA, MS 2014

$$\mu_{\mathfrak{Q}}(\hat{f}) = cm_{\mathbb{R}^d}(f)$$

Reduces to Siegel formula on (sub-)space of lattices, applied to $f \times \mathbb{1}_{\mathcal{W}}$

•
$$\mathbb{K}_{S} = \prod \mathbb{K}_{|\cdot|_{\sigma_{i}}} = \prod \mathbb{R} = \mathbb{R}^{D}$$

- $\mathcal{O}^d = \mathcal{L}_{\mathcal{O}} < \mathbb{K}^d_S$ lattice embedded via $v \mapsto (\sigma_1(v), \dots, \sigma_D(v))$
- $G = SL_d(\mathbb{K}_S) = SL_d(\mathbb{R})^D$, $\Gamma = \Gamma_{\mathcal{O}} = SL_d(\mathcal{O}) < G$, embedded via $\gamma \mapsto (\sigma_1(\gamma), \ldots, \gamma_D(\gamma))$.

GOAL: ROGER TYPE BOUNDS

Suppose
$$f \in C_c(\mathbb{R}^d)$$
, $\Lambda \in \mathfrak{Q} = \Psi(G/\Gamma) = \{\Lambda(\mathcal{L}, \mathcal{W}) : \mathcal{L} \in G.\mathcal{O}^d\}$,
 $\mu_{\mathfrak{Q}} = \Psi_* m_{G/\Gamma}$ then $\mu_{\mathfrak{Q}}(\widehat{f}^2) = m_{\mathbb{R}^d}(f)^2 + \mathcal{O}(m_{\mathbb{R}^d}(f))$.

What I will prove: If $f = f_1 \cdots \times f_D : \mathbb{R}^n \to \mathbb{R}$ characteristic function and \hat{f} Siegel transform on \mathbb{R}^n as usual then

$$m_{G/\Gamma}(\widehat{f}^2) = m_{\mathbb{R}^n}(f)^2 + \mathcal{O}(m_{\mathbb{R}^n}(f)).$$

INTEGRABILITY

$$\hat{f} \in L^{d+\varepsilon}(m_{G/\Gamma}).$$

This is strict.

Eskin-Margulis-Mozes '99 for $\mathbb{K} = \mathbb{Q}$.

Integrability of Siegel Transform

INTEGRABILITY

If $f \in C_c(\mathbb{R}^{dD=n})$, then

$$\hat{f} \in L^{d+\varepsilon}(m_{\mathsf{SL}_d(\mathbb{K}_S)/\Gamma_\mathcal{O}})$$

where $\mathsf{SL}_d(\mathbb{K}_S) = \mathsf{SL}_d(\mathbb{R})^D$ and $\Gamma_{\mathcal{O}} = \{(\sigma_1(\gamma), \dots, \sigma_d(\gamma)) : \gamma \in \mathsf{SL}_d(\mathcal{O})\}.$

PROOF.

- Define $\alpha(\mathcal{L}) = \max (\operatorname{covol}(\mathcal{L}')^{-1} : \mathcal{L}' < \mathcal{L})$. Then $\hat{f} \ll \alpha$.
- If $\mathcal{L} = g\mathbb{Z}^n = kan\mathbb{Z}^n$, then $\alpha(\mathcal{L}) \ll \alpha(a\mathbb{Z}^n)$ where $a = \text{diag}(a_1, \ldots, a_n)$ (via Siegel domain) or, if λ_i Minkowski's successive minima, then $\alpha(\mathcal{L}) \asymp \lambda_1 \cdots \cdots \lambda_{i_0}$, where i_0 last index such that $\lambda_{i_0} < 1$.

• Denote A_d diagonal matrices in $SL_d(\mathbb{R})$

- Define $\alpha(\mathcal{L}) = \max (\operatorname{covol}(\mathcal{L}')^{-1} : \mathcal{L}' < \mathcal{L})$. Then $\hat{f} \ll \alpha$.
- If $\mathcal{L} = g\mathbb{Z}^n = kan\mathbb{Z}^n$, then $\alpha(\mathcal{L}) \ll \alpha(a\mathbb{Z}^n)$ where $a = \text{diag}(a_1, \ldots, a_n)$ (via Siegel domain) or, if λ_i Minkowski's successive minima, then $\alpha(\mathcal{L}) \simeq \lambda_1 \cdots \lambda_{i_0}$, where i_0 last index such that $\lambda_{i_0} < 1$.
- Haar measure on $SL_d(\mathbb{R})$ in KA_dN coordinates given by $dg = dk \ da \ \rho(a) \ dn$ where $\rho(a) = |\det Ad(a)|_{\mathfrak{n}}| = \prod_{i < j} \frac{a_i}{a_j}$ and $da = \prod_{i=1}^{d-1} \frac{da_i}{a_i}$
- Remains to find a fundamental domain (or rather surjective set) for $\Gamma_{\mathcal{O}}.$

- Remains to find a fundamental domain (or rather surjective set) for $\Gamma_{\mathcal{O}}$: Follow Siegel domain proof for $\Gamma_{\mathbb{Z}}$.
- $\Gamma_{\mathcal{O}}$ stabilizer of the lattice $\mathcal{L}_{\mathcal{O}} = \{\sigma_1(v), \dots, \sigma_D(v) : v \in \mathcal{O}^d\}.$
- Upper unipotents of $\Gamma_{\mathcal{O}}$ (uniform) lattice in upper unipotents of $\mathsf{SL}_d(\mathbb{R})^D$
- By Minkowksi successive minima + Gram Schmidt g = kan with, a_i ≈ λ_i(aL_O), a_{i+1}/a_i ≫ 1 in each each SL_d(ℝ) block (so i = jd.....(j + 1)d − 1).
- Have units in O, hence have non-compact diagonal subgroup in Γ_O. Can find u ∈ O[×] such that for any z ∈ K, |σ_i(zu)| ≍ N(z)^{1/D}
- Can be used to find $\gamma \in \Gamma_{\mathcal{O}}$ such that for any $a \in A_d^D, a\gamma$ has $(a\gamma)_{jd} \asymp (a\gamma)_{1d}$ for $j = 1 \dots D$

- In summery: Instead of integrating over *D*-fold product of (*A_d*)_c = { <sup>*a_{i+1}*/_{*a_i*} ≥ *c*}, only need to integerate over **one** (*A_d*)_c and *D* − 1 many compact neighborhoods of identity in *A_d*.
 </sup>
- Have now explicit formula of integrand and measure, so an explicit calculation (identically to EMM99) remains, giving same integrability exponent as Z case.

- The probabilistic almost all counting result uses bounds on second moments (Borel-Cantelli)
- This is given by Rogers type formula:

```
ROGER TYPE FORMULA
```

Suppose $h \in C_c(\mathbb{R}^{pn})$.

$${}^{\mathcal{P}}\widehat{h}(\mathcal{L}) = \sum_{v_1,\ldots,v_p} h(v_1,\ldots,v_p)$$

If ${}^p\widehat{h}(\mathcal{L}) \in L^1(\mu)$ for μ *L*-invariant homogeneous measure

$$\mu({}^{p}\widehat{h}) = \sum \tau_{i}(h)$$

where τ_i are Lebesgue measures supported on *L*-orbits on \mathbb{R}^{pn} , and hence Lebesgue on some some hyperplane.

- Riesz representation Theorem (directly from integrability)
- Unfolding a la Weil (Something to check: finite volume)

ROGER TYPE FORMULA

Suppose $h \in C_c(\mathbb{R}^{pn})$.

$${}^{p}\widehat{h}(\mathcal{L}) = \sum_{v_1,\ldots,v_p} h(v_1,\ldots,v_p)$$

If ${}^{p}\widehat{h}(\mathcal{L}) \in L^{1}(\mu)$ for μ *L*-invariant homogeneous measure

$$\mu({}^{p}\widehat{h}) = \sum \tau_{i}(h)$$

where τ_i are Lebesgue measures supported on *L*-orbits on \mathbb{R}^{pn} , and hence Lebesgue on some some hyperplane.

Rogers: $\mu = m_{X_n}$, n > 2. Macbeath-R Determines what *exactly* the τ_i are Generalizations by Yu, Kelmer-Yu, Ghosh-KY, Han to other groups, congruence lattice, *S*-adics... For application suffices to get bound on volume growth. Schmidt n = 2. See Kleinbock-Skenderi "Rogers type groups"

ROGER TYPE FORMULA

Suppose $h \in C_c(\mathbb{R}^{pn})$.

$${}^{p}\widehat{h}(\mathcal{L}) = \sum_{v_1,\ldots,v_p} h(v_1,\ldots,v_p)$$

If ${}^{p}\widehat{h}(\mathcal{L}) \in L^{1}(\mu)$ for μ *L*-invariant then

$$\mu({}^{p}\widehat{h}) = \sum \tau_{i}(h)$$

where τ_i are Lebesgue measures supported on *L*-orbits on \mathbb{R}^{pn} , and hence Lebesgue on some some hyperplane.

Get useful moment bounds for Siegel transform of $f \in C_c(\mathbb{R}^n)$: $\mu(\hat{f}^p) = m_{\mathbb{R}^n}(f)^p + \tau_{rest}(f^{\otimes p})$ with τ_{rest} lower order volume growth.

Weil Unfolding

Let $G_1 \subset G_2$ unimodular, $\Gamma_2 \subset G_2$ lattice, $\Gamma_1 = \Gamma_2 \cap G_1$, and for any $\gamma \in \Gamma_2$, denote its coset $\gamma \Gamma_1 \in \Gamma_2 / \Gamma_1$ by $[\gamma]$.

Weil Unfolding Theorem

Assume that Γ_1 is a lattice in G_1 . For any $F \in L^1(G_2/G_1, m_{G_2/G_1})$, define

$$ilde{F}(g\Gamma_2) = \sum_{[\gamma]\in \Gamma_2/\Gamma_1} F(g\gamma).$$

Then $ilde{F} \in L^1(G_2/\Gamma_2, m_{G_2/\Gamma_2})$ and

$$\int_{G_2/\Gamma_2} \tilde{F} \, dm_{G_2/\Gamma_2} = \int_{G_2/G_1} F \, dm_{G_2/G_1}$$

 $G = G_2$. $G_1 = \operatorname{Stab}(v, w)$, for $(v, w) \in \mathcal{O}^{2d}$.

In more detail: $m_{\mathsf{SL}_d(\mathbb{R})^D/\Gamma_{\mathcal{O}}}(\widehat{f}^2) = \sum \tau_i(f \otimes f) = m_{\mathbb{R}^{Dd}}(f)^2 + \mathcal{O}(m_{\mathbb{R}^{Dd}}(f))$

- Decompose pairs of vectors $\{(v, w) \in \mathcal{O}^d \times \mathcal{O}^d\}$ in $SL_d(\mathcal{O})$ -orbits.
- Sum over these single orbits correspond to "primitive Siegel transform"
- Unfolding identifies this discrete measure with measure on $SL_d(\mathbb{R})^D$ modulo stabilizer of (v, w)
- Three types: w = 0, $v \in \mathbb{K}^{\times} w$, linear independent
- SL_d(K) < SL_d(K_S) = SL_d(R)^D transitive on linear independent vectors of O^d < R^{dD}. This is the main term, corresponding to τ_i = τ_{main} = m_{R^{2dD}} stab(v, w) = SL_{d-2}(K_S) × K_S^{2(d-2)} up to a conjugation in SL_d(K). (namely, by some matrix having (v, w) as first two column vectors) Intersects SL_d(O) in a lattice. So Weil applies.

In more detail: $m_{\mathsf{SL}_d(\mathbb{R})^D/\Gamma_{\mathcal{O}}}(\widehat{f}^2) = \sum \tau_i(f \otimes f) = m_{\mathbb{R}^{Dd}}(f)^2 + \mathcal{O}(m_{\mathbb{R}^{Dd}}(f))$

- Other orbits (av, bv), for $a, b \in \mathbb{K}$.
- Plugging in (product) balls, can calculate explicitely when integrating against "*dv*" since correlation of two scaled balls is again a ball.
- Can move to general functions by using Rogers / Brasscamp-Lieb-Luttinger symmetrization formula (see discussions in Skenderi)
- Alternatively, do a trick of Schmidt f(x)f(^a/_bx) ≤ f(^a/_bx) for f characteristic function.
- In any case, need some care of showing ∑ c_i < ∞ (follows from integrability, i.e. the abstract Rogers formula).
- Caveat: *f* must be a product function *f*₁...*f*_D resp. get Roger type bound only for the RMS measure, not general homogenous orbit.

THEOREM (ROGERS, BRASCAMP-LIEB-LUTTINGER])

Suppose $f_j : \mathbb{R}^d \to \mathbb{R}$, $j = 1, ..., \ell$ are nonnegative, and $\{a_{jm}\}$ an $\ell \times r$ -matrix. Then

$$\int_{(\mathbb{R}^d)^r} f_1(\sum a_{1m} x_m) \dots f_\ell(\sum a_{\ell m} x_m) dm_{\mathbb{R}^d}(x_1) \dots dm_{\mathbb{R}^d}(x_r)$$

$$\leq \int_{(\mathbb{R}^d)^r} f_1^*(\sum a_{1m}x_m) \dots f_\ell^*(\sum a_{\ell m}x_m) dm_{\mathbb{R}^d}(x_1) \dots dm_{\mathbb{R}^d}(x_r)$$

where given a function $f : \mathbb{R}^d \to \mathbb{R}$, the function $f^* : \mathbb{R}^d \to is$ the symmetric decreasing rearrangement, i.e. if $f = \mathbb{1}_A$ then $f^* = \mathbb{1}_{B_r(0)}$ where $|A| = |B_r(0)|$

- Up to conjugation in $SL_d(\mathbb{K})$, stabilizer of $SL_d(\mathbb{K}_S)$ at $(av, bv), v \in \mathcal{O}^d, a, b \in \mathbb{K}$ is $SL_{d-1}(\mathbb{K}_S) \ltimes \mathbb{K}_S^{d-1}$
- SL_d(K_S)-orbit at e = (av, bv) in K^{2d}_S is a (K-rationally) skewed K^d_S with Lebesgue measure being a multiple c_e of a push-forward of a fixed Haar measure (×a, ×b)_{*}m_{K^d_c}

•
$$\tau_{\text{rest}}(f \otimes f) = \sum_{e} c_{e}(\times a, \times b)_{*} m_{\mathbb{K}_{S}^{d}}(f \otimes f)$$

•
$$(\times a, \times b)_* m_{\mathbb{K}^d_S}(f \otimes f) = \int f(aw) f(bw) dm_{\mathbb{K}^d_S}(w)$$

$$= \int_{\mathbb{R}^{dD}} f_1(\sigma_1(a)x_1) \dots f_D(\sigma_D(a)x_D) f_1(\sigma_1(b)x_1) \dots f_D(\sigma_d(b)x_D)$$

$$dm_{\mathbb{R}^d}(x_1)\ldots dm_{\mathbb{R}^d}(x_D)$$

• Apply symmetrization to $\ell = 2D$, r = D

• By the previous, if $f = \prod \mathbb{1}_{A_i}$, $|A_i| = V_i = |B_{r_i}(0)|$

 $au_{\mathsf{rest}}(f\otimes f)$

$$\leq \sum_{\mathfrak{e}} c_{\mathfrak{e}} \int_{\mathbb{R}^{dD}} \prod \mathbb{1}_{B_{r_i}(0)} (\sigma_i(a) x_i) \mathbb{1}_{B_{r_i}(0)} (\sigma_i(b) x_i) dm_{\mathbb{R}^d}(x_i)$$
$$= \sum c_{\mathfrak{e}} \prod \max(|\sigma_i(a)|, |\sigma_i(b)|)^{-d} V_i = c_{\mathsf{rest}} m_{\mathbb{K}^d_S}(f)$$

• $c_{\text{rest}} < \infty$ since the inequality \leq is equality if f is a product of balls, and $\tau_{\text{rest}}(f \otimes f) < \infty$

- Got Rogers bound for "product sets " $A_1 \times \ldots A_D$
- This suffices for the application, which needs $A \times \mathcal{W}$ where $|A| \to \infty$.
- Indeed, take A₂ × · · · × A_D ⊃ W to dominate in τ_{rest}. These are fixed, hence absorbed into the constant.