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Definition: Delone set

Definition: Delone set
Let (X , d) be a metric space. A point set Λ ⊂ X is called Delone
if
• Λ is uniformly discrete
∃r > 0 such that Br (x) ∩ Λ = {x} for all x ∈ Λ
• Λ is relatively dense ∃R > 0 such that BR(0) + Λ covers X .



A local criterion for regularity of a system of points.

Definition: T -patch
A point set P(x ,T ) = Λ ∩ BT (x) for x ∈ Λ is called T -patch.



A local criterion for regularity of a system of points.

Definition: T -patch
A point set P(x ,T ) = Λ ∩ BT (x) for x ∈ Λ is called T -patch.

Thm(Delone,Dolbilin,Shtogrin,Galiulin;’76)
Let Λ ⊂ Rd be Delone. There exists T0 > 0 such that if all
T0-patches are equivalent up to isometry then there exists a lattice
Γ < Isom(Rd ) and x ∈ Λ s.t.

Λ = Γx .

Same paper: Sn, Hn.



Meyer sets

Meyer’s definition of a quasicrystal
A Delone set Λ ⊂ Rd is called Meyer if Λ− Λ ⊂ Λ + E for E ⊂ Rd

finite.

This generalizes lattices:
• If E is trivial, Λ is a lattice.
• Λ is Meyer if and only if Λ and Λ− Λ are Delone. (Lagarias)

Embedding Theorem (Meyer ’72)
Any Meyer set is a subset of a cut-and-project quasicrystal.



Cut-and-Project sets

Definition: cut-and-project scheme
The data (L,Rd ,Rm) defines a cut-and-project scheme if

L is a lattice in the group Rd × Rm

π = πRd , πint = πRm natural projections satisfy
(I) π|L is injective

(D) πint(L) is dense in Rm.

Definition: Window and cut-and-project sets
Window W ⊂ Rm bounded and define the cut-and-project set

Λ(W,L) = π
(
L ∩

(
Rd ×W

))
If W has non-empty interior, call it cut-and-project quasicrystal. It
is Meyer.



Patch Counting

(Regular) boundary of W has zero measure
For any T -patch P = P(y ,T ) = Λ ∩ BT (y) define

freqΛ(P) = lim
t!∞

#{x ∈ Λ ∩ Bt(0) : P(x ,T ) ∼Rd P}
td .



Patch Counting

For any T -patch P = P(y ,T ) = Λ ∩ BT (y) define

freqΛ(P) = lim
t!∞

#{x ∈ Λ ∩ Bt(0) : P(x ,T ) ∼Rd P}
td .

Theorem on Patch Frequency Asymptotics
Fix d + m = n, d > 2. There exists κ > 0 such that for a random
cut-and-project quasicrystal Λ of (L,Rd ,Rm) of K-type SLk or
Spk we have

#{x ∈ Λ ∩ Bt(0) : P(x ,T ) ∼Rd P} = freqΛ(P)td +O(td−κ).
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Spaces of quasicrystals

Construction of Marklof and Strömbergsson
• Λ = Λ(L,W) cut-and-project quasicrystal of (L,Rd ,Rm)
• Suppose L = gZn ∈ Xn = SLn(R)/ SLn(Z) for g ∈ SLn(R)

and consider SLd (R) < SLn(R) top-left block.
• SLd (R)L = L′L for some L′ < SLn(R) (Ratner)

The space of quasicrystals associated to L

Q = {Λ(y ,W) : y ∈ L′L}

with probability measure µQ (push forward of mL′L under
y 7! Λ(y ,W)).

MS actually consider ASLd (R)-orbit closure. See also El-Baz for
Adelic case.
For mL′L-a.e. y defines a cut-and-project scheme i.e. it holds

(I) π|L is injective
(D) πint(L) is dense in Rm.



Chabauty-Fell topology

The space of quasicrystals associated to L

Q = {Λ(y ,W) : y ∈ L′L} ⊂ C(Rd )

where C(Rd ) is the space of closed sets on Rd equipped with the
Chaubauty-Fell metric,

d(Λ0,Λ1) = max
(
1, inf

ε

(
Λi ∩ B 1

ε
(0) ⊂ Λ1−i + Bε(0); i = 0, 1

))

Proposition

Ψ : Xn = SLn(R)/ SLn(Z) ! C(Rd ), L 7! Λ(L,W)

is Borel, and continuous when πint(L) ∩ ∂W = ∅.



Chabauty-Fell topology

The space of quasicrystals associated to L

Q = {Λ(y ,W) : y ∈ L′L = SLd (R)L} ⊂ C(Rd )

Proposition

Ψ : Xn = SLn(R)/ SLn(Z) ! C(Rd ), L 7! Λ(L,W)

is Borel, and continuous when πint(L) ∩ ∂W = ∅.

Siegel-Veech Theorem of MS14
If W is regular then mL′L(πint(L) ∩ ∂W 6= ∅) = 0

Corollary
µQ = Ψ∗mL′L is a Borel probability and Ψ∗ is continuous at mL′L.



Ergodicity implies Solidarity

Solidarity Theorem
Suppose µ on C(Rd ) is SLd (R)-ergodic probability gives positive
mass on cut and project sets with regular windows.
Then µ = µQ for some Q.
In particular, there is a single internal space and window that give
rise to its support.

Proof.
By the Howe-Moore Theorem, µ is gt ergodic (gt one-parameter
diagonalizable subgroup)
By the Birkhoff Ergodic Theorem, for µ a.e. Λ

1
T

∫ T

0
(gt)∗δΛdt ! µ



Ergodicity implies Solidarity

Proof.
By the Howe-Moore Theorem, µ is gt ergodic (gt one-parameter
diagonalizable subgroup)
By the Birkhoff Ergodic Theorem, for µ a.e. Λ

1
T

∫ T

0
(gt)∗δΛdt ! µ

By invariance of U = G+
gt and Fubini’s theorem, a.e. Λ, mU -a.e.

u ∈ U, u.Λ is Birkhoff generic.
Hence for Ω ⊂ U compact, non-empty interior

1
T

∫ T

0

∫
Ω

(gtu)∗δΛdmUdt ! µ



Ergodicity implies Solidarity

Proof.
For µ-a.e. Λ

1
T

∫ T

0

∫
Ω

(gtu)∗δΛdmUdt ! µ

Take such a generic Λ = Λ(LΛ,W ) = cΛ(L, 1
cW ) for some

unimodular L < Rn and regular window W < Rm.
Consider the same ergodic average, but on SLn(R)/ SLn(Z)
replacing Λ with L.
It converges to some homogeneous measure mL′L by a theorem of
Shah!
Since any such mL′L is a continuity point for Ψ∗ by previous
corollary, also the original ergodic average converges to Ψ∗mL′L.



What are the spaces of quasicrystals?

Theorem I
Write Y = SLd (R)g SLn(Z) = L′L = gL SLn(Z). Then L is
isogeneous to the real points of an almost Q-simple linear algebraic
group L.

Theorem II
L is isogeneous (over C) to either a product of SLk(C)s or
Spk(C)s.

What we really need
What Q-groups do really appear?
For the remainder of this talk: L = ResK|Q(SLd )



Lemma about rational invariant subspaces

(I) π|L is injective
(D) πint(L) is dense in Rm.

(I) and (D) implies (L) Lemma
A vector space V < Rn is called L-rational if V ∩ L is a lattice in
V .
The following implications hold.
a. (D)⇒ Rd is not contained in a proper L-rational subspace.
b. (I)⇒ Rm contains no non-trivial L-rational subspace.

Define
(irred) There exists no proper L-rational subspace of Rn that is

SLd (R)-invariant
c. (I) and (D)⇒ (irred).



(irred) implies semi-simple

Proof.
• Shah ’91: L minimal Q-group generated by unipotents
containing H ′ = g−1 SLd (R)g
• L is semi-simple: Let U denote the (unipotent) radical of L.

By Shah it is also defined over Q.
• V U is a rational subspace by Zariski density of U(Q). Cannot

be by previous lemma, so it must be trivial.
• Since U unipotent it does have an invariant subspace, so it U

must be trivial.



SLd (R)g SLn(Z) = L′L = gL(R) SLn(Z). Claim: L is Q-simple

Proof.
• Decompose L into Q-simple factors Tj which we further split
in R-simple factors Si .
• Need to show that H ′ = g−1 SLd (R)g < Si = Si (R) for some

i .
• Decompose Rn into irreducible representations of H ′, i.e.

Rn = g−1Rd ⊕ g−1Rm.
• Project H ′ to Sj , call it H ′j . I = {i : H ′i 6= e}. Let

LH′ =
∏

i∈I Si . Contains H ′.
• Let Vi isotypical reps of LH′ , assume g−1Rd < V1. Then H ′ is

inside intersection of kernels of LH′ |V>1 .
• Intersection of these kernels is a normal subgroup of LH′

hence equal to some subproduct of Si , i ∈ I, contains H ′, so
it is all of LH′ . Hence V>1 trivial rep.



SLd (R)g SLn(Z) = L′L = gL(R) SLn(Z). Claim: L is Q-simple

Proof.
• Need to show that H ′ = g−1 SLd (R)g < Si = Si (R) for some

i . So far: Rn = V1 ⊕W where W trivial rep of LH′ and
g−1Rd < V1.

• H ′i = πSi (H ′), H ′i also preserve g−1Rd (argument using
regular elements h =

∏
hi).

• Assume h1 ∈ H ′2 action on g−1Rd non-trivial, take some
h1-invariant proper subspace V ′′ of g−1Rd .
• Since H ′>1-invariant, must be trivial w.r.t H ′>1 ' SLd (R).
Use here that: 1) simplicity 2) classification of reps of SLd (R)
3) and that dim of V ′′ is < d .
• Get non trivial kernels in S>1, so kernels equal to Sj and Sj

act trivally on V ′′ and hence on V ′′′ = span(S1V ′′).
• So V ′′′ is LH′-invariant. But note that since H ′ < LH′ , LH′

acts irred on V1, hence V1 = V ′′′.



SLd (R)g SLn(Z) = L′L = gL(R) SLn(Z). Claim: L is Q-simple

Proof.
• Hence S>1 acts trivial on V1, hence on Rn by previous slide.
Hence S>1 didn’t exist in the first place (definition if I), and
H ′ < S1.



Theorem II

Theorem (Tamagawa)
If L is almost Q-simple and simply connected, there exists a field
K and an absolutely almost simple simply connected group G
defined over K such that L 'Q ResK/Q(G).

Theorem (Morris-Witte in Appendix of
Solomon-Weiss ’14)
If G as above contains a conjugate of the top left SLd (C) then G
is either of type Ak or Ck .



Restriction of Scalars

Let K be a number field.
Let G be a K-group.
Then there is a Q-group ResK|Q(G) such that
if σi : K ! C fields embeddings then

ResK|Q(G)(Q) = {σ1(g), . . . , σd (g) : g ∈ G(K)}

(similarly, with Z and O replacing Q resp. K)
For any field K′ containing all σi (K),

ResK|Q(G)(K′) =
∏

Gσi (K′).



Restriction of Scalars

Concretely, K = Q(
√
2), G = SL2(C).

K is a Q vectorspace. In fact algebra.

φ : a + b
√
2 7!

[
a 2b
b a

]
∈ Mat2(Q)

AD − BC = 1
[
A B
C D

]
7!

[
φ(A) φ(B)
φ(C) φ(D)

]
∈ SL4(C)

Image of φ can be simulatenously diagonalized (over K), φ(z) has
Eigenvalues z = σ1(z), z = σ2(z).
Applying this diagonalization, and a permutation matrix,

[
φ(A) φ(B)
φ(C) φ(D)

]
7!


σ1(A) σ1(B)
σ1(C) σ1(D)

σ2(A) σ2(B)
σ2(C) σ2(D)

 ∈ SLσ1
2 (C)×SLσ2

2 (C)



Minkowski Space

• K is a totally real number field of degree D. O ring of
integers.
• Field embeddings σi : K ! R, extend to Kk ! Rk .
• L = {(σ1(v), . . . , σD(v)) : v ∈ Ok} < RDk lattice

Example: Vertices of Ammann-Beenker Tiling
K = Q(

√
2), k = 2 then consider

{(σ1(v), σ2(v)) : v ∈ Z[
√
2]2} < R4 with basis

1 0
√
2 0

0 1 0
√
2

1 0 −
√
2 0

0 1 0 −
√
2


Ammann-Beenker: L finite index sublattice of above (s.t.
v1 − v2 ∈

√
2Z[
√
2]).

d = m = 2
W =Octagon.

See Baake-Grimm or Hammarhjelm.



Ammann - Beenker

Demo



Siegel Transform

f ∈ Cc(Rd ). Define the Siegel-Veech transform, for Λ ∈ Q,

f̂ (Λ) =
∑

v∈Λ−{0}
f (v)

Siegel-Veech formula, MS 2014

µQ(f̂ ) = cmRd (f )

Reduces to Siegel formula on (sub-)space of lattices, applied to
f × 1W



Setup

• K totally real numberfield, O its ring of integers and
σi : K ! R embeddings, i = 1 . . .D = deg(K)
• KS =

∏
K|·|σi

=
∏

R = RD

• Od = LO < Kd
S lattice embedded via v 7! (σ1(v), . . . , σD(v))

• G = SLd (KS) = SLd (R)D, Γ = ΓO = SLd (O) < G , embedded
via γ 7! (σ1(γ), . . . , γD(γ)).

Goal: Roger type bounds
Suppose f ∈ Cc(Rd ), Λ ∈ Q = Ψ(G/Γ) = {Λ(L,W) : L ∈ G .Od},
µQ = Ψ∗mG/Γ then µQ(f̂ 2) = mRd (f )2 +O(mRd (f )).

What I will prove: If f = f1 · · · × fD : Rn ! R characteristic
function and f̂ Siegel transform on Rn as usual then

mG/Γ(f̂ 2) = mRn (f )2 +O(mRn (f )).



Integrability of Siegel Transform

Integrability

f̂ ∈ Ld+ε(mG/Γ).

This is strict.

Eskin-Margulis-Mozes ’99 for K = Q.



Integrability of Siegel Transform

Integrability
If f ∈ Cc(RdD=n), then

f̂ ∈ Ld+ε(mSLd (KS )/ΓO )

where SLd (KS) = SLd (R)D and
ΓO = {(σ1(γ), . . . , σd (γ)) : γ ∈ SLd (O)}.

Proof.
• Define α(L) = max

(
covol(L′)−1 : L′ < L

)
. Then f̂ � α.

• If L = gZn = kanZn, then α(L)� α(aZn) where
a = diag (a1, . . . , an) (via Siegel domain)
or, if λi Minkowski’s successive minima, then
α(L) � λ1 · · · · · λi0 , where i0 last index such that λi0 < 1.
• Denote Ad diagonal matrices in SLd (R)



Proof of Integrability of Siegel Transform

Proof.
• Define α(L) = max

(
covol(L′)−1 : L′ < L

)
. Then f̂ � α.

• If L = gZn = kanZn, then α(L)� α(aZn) where
a = diag (a1, . . . , an) (via Siegel domain)
or, if λi Minkowski’s successive minima, then
α(L) � λ1 · · · · · λi0 , where i0 last index such that λi0 < 1.
• Haar measure on SLd (R) in KAdN coordinates given by

dg = dk da ρ(a) dn
where ρ(a) = | det Ad(a)|n| =

∏
i<j

ai
aj

and da =
∏d−1

i=1
dai
ai

• Remains to find a fundamental domain ( or rather surjective
set) for ΓO.



Proof of Integrability of Siegel Transform

Proof.
• Remains to find a fundamental domain ( or rather surjective
set) for ΓO: Follow Siegel domain proof for ΓZ.

• ΓO stabilizer of the lattice
LO = {σ1(v), . . . , σD(v) : v ∈ Od}.
• Upper unipotents of ΓO (uniform) lattice in upper unipotents
of SLd (R)D

• By Minkowksi successive minima + Gram Schmidt g = kan
with, ai � λi (aLO), ai+1/ai � 1 in each each SLd (R) block
(so i = jd . . . ...(j + 1)d − 1).
• Have units in O, hence have non-compact diagonal subgroup
in ΓO.
Can find u ∈ O× such that for any z ∈ K, |σi (zu)| � N(z)1/D

• Can be used to find γ ∈ ΓO such that for any a ∈ AD
d ,aγ has

(aγ)jd � (aγ)1d for j = 1 . . .D



Proof of Integrability of Siegel Transform

Proof.
• In summery: Instead of integrating over D-fold product of

(Ad )c = {ai+1
ai
≥ c}, only need to integerate over one (Ad )c

and D − 1 many compact neighborhoods of identity in Ad .
• Have now explicit formula of integrand and measure, so an
explicit calculation (identically to EMM99) remains, giving
same integrability exponent as Z case.



Moment Bounds

• The probabilistic almost all counting result uses bounds on
second moments (Borel-Cantelli)
• This is given by Rogers type formula:

Roger Type Formula
Suppose h ∈ Cc(Rpn).

p ĥ(L) =
∑

v1,...,vp

h(v1, . . . , vp)

If p ĥ(L) ∈ L1(µ) for µ L-invariant homogeneous measure

µ(p ĥ) =
∑

τi (h)

where τi are Lebesgue measures supported on L-orbits on Rpn, and
hence Lebesgue on some some hyperplane.

• Riesz representation Theorem (directly from integrability)
• Unfolding a la Weil (Something to check: finite volume)



Moment Bounds

Roger Type Formula
Suppose h ∈ Cc(Rpn).

p ĥ(L) =
∑

v1,...,vp

h(v1, . . . , vp)

If p ĥ(L) ∈ L1(µ) for µ L-invariant homogeneous measure

µ(p ĥ) =
∑

τi (h)

where τi are Lebesgue measures supported on L-orbits on Rpn, and
hence Lebesgue on some some hyperplane.

Rogers: µ = mXn , n > 2. Macbeath-R Determines what exactly
the τi are Generalizations by Yu, Kelmer-Yu, Ghosh-KY, Han to
other groups, congruence lattice, S-adics... For application suffices
to get bound on volume growth. Schmidt n = 2. See
Kleinbock-Skenderi "Rogers type groups"



Moment Bounds

Roger Type Formula
Suppose h ∈ Cc(Rpn).

p ĥ(L) =
∑

v1,...,vp

h(v1, . . . , vp)

If p ĥ(L) ∈ L1(µ) for µ L-invariant then

µ(p ĥ) =
∑

τi (h)

where τi are Lebesgue measures supported on L-orbits on Rpn, and
hence Lebesgue on some some hyperplane.

Get useful moment bounds for Siegel transform of f ∈ Cc(Rn):
µ(f̂ p) = mRn (f )p + τrest(f ⊗p) with τrest lower order volume
growth.



Weil Unfolding

Let G1 ⊂ G2 unimodular, Γ2 ⊂ G2 lattice, Γ1 = Γ2 ∩ G1, and for
any γ ∈ Γ2, denote its coset γΓ1 ∈ Γ2/Γ1 by [γ].

Weil Unfolding Theorem
Assume that Γ1 is a lattice in G1.
For any F ∈ L1(G2/G1,mG2/G1), define

F̃ (gΓ2) =
∑

[γ]∈Γ2/Γ1

F (gγ).

Then F̃ ∈ L1(G2/Γ2,mG2/Γ2) and∫
G2/Γ2

F̃ dmG2/Γ2 =
∫

G2/G1
F dmG2/G1 .

G = G2. G1 = Stab(v ,w), for (v ,w) ∈ O2d .



In more detail: mSLd (R)D/ΓO (f̂ 2) =
∑
τi (f ⊗ f ) = mRDd (f )2 +O(mRDd (f ))

• Decompose pairs of vectors {(v ,w) ∈ Od ×Od} in
SLd (O)-orbits.
• Sum over these single orbits correspond to "primitive Siegel
transform"
• Unfolding identifies this discrete measure with measure on

SLd (R)D modulo stabilizer of (v ,w)
• Three types: w = 0, v ∈ K×w , linear independent
• SLd (K) < SLd (KS) = SLd (R)D transitive on linear

independent vectors of Od < RdD. This is the main term,
corresponding to τi = τmain = mR2dD

stab(v ,w) = SLd−2(KS) nK2(d−2)
S up to a conjugation in

SLd (K). (namely, by some matrix having (v ,w) as first two
column vectors)
Intersects SLd (O) in a lattice. So Weil applies.



In more detail: mSLd (R)D/ΓO (f̂ 2) =
∑
τi (f ⊗ f ) = mRDd (f )2 +O(mRDd (f ))

• Other orbits (av , bv), for a, b ∈ K.
• Plugging in (product) balls, can calculate explicitely when
integrating against "dv" since correlation of two scaled balls is
again a ball.
• Can move to general functions by using Rogers /
Brasscamp-Lieb-Luttinger symmetrization formula (see
discussions in Skenderi)
• Alternatively, do a trick of Schmidt f (x)f ( a

b x) ≤ f ( a
b x) for f

characteristic function.
• In any case, need some care of showing

∑
ci <∞ (follows

from integrability, i.e. the abstract Rogers formula).
• Caveat: f must be a product function f1...fD resp. get Roger
type bound only for the RMS measure, not general
homogenous orbit.



Symmetrization

Theorem (Rogers, Brascamp-Lieb-Luttinger])
Suppose fj : Rd ! R, j = 1, . . . , ` are nonnegative, and {ajm} an
`× r -matrix. Then∫

(Rd )r
f1(
∑

a1mxm) . . . f`(
∑

a`mxm)dmRd (x1) . . . dmRd (xr )

≤
∫

(Rd )r
f ∗1 (
∑

a1mxm) . . . f ∗` (
∑

a`mxm)dmRd (x1) . . . dmRd (xr )

where given a function f : Rd ! R, the function f ∗ : Rd ! is the
symmetric decreasing rearrangement, i.e. if f = 1A then
f ∗ = 1Br (0) where |A| = |Br (0)|



Bounding τrest

• Up to conjugation in SLd (K), stabilizer of SLd (KS) at
(av , bv), v ∈ Od , a, b ∈ K is SLd−1(KS) nKd−1

S
• SLd (KS)-orbit at e = (av , bv) in K2d

S is a (K-rationally)
skewed Kd

S with Lebesgue measure being a multiple ce of a
push-forward of a fixed Haar measure (×a,×b)∗mKd

S

• τrest(f ⊗ f ) =
∑

e ce(×a,×b)∗mKd
S
(f ⊗ f )

• (×a,×b)∗mKd
S
(f ⊗ f ) =

∫
f (aw)f (bw)dmKd

S
(w)

=
∫
RdD

f1(σ1(a)x1) . . . fD(σD(a)xD)f1(σ1(b)x1) . . . fD(σd (b)xD)

dmRd (x1) . . . dmRd (xD)
• Apply symmetrization to ` = 2D, r = D



Bounding τrest

• By the previous, if f =
∏
1Ai , |Ai | = Vi = |Bri (0)|

τrest(f ⊗ f )

≤
∑
e

ce
∫
RdD

∏
1Bri (0)(σi (a)xi )1Bri (0)(σi (b)xi )dmRd (xi )

=
∑

ce
∏

max(|σi (a)|, |σi (b)|)−dVi = crestmKd
S
(f )

• crest <∞ since the inequality ≤ is equality if f is a product of
balls, and τrest(f ⊗ f ) <∞



Back to Cut and Project sets

• Got Rogers bound for "product sets " A1 × . . .AD
• This suffices for the application, which needs A×W where
|A|!∞.
• Indeed, take A2 × · · · × AD ⊃ W to dominate in τrest. These

are fixed, hence absorbed into the constant.
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