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Let (X, d) be a metric space. A point set A C X is called Delone
if
® A is uniformly discrete
3Ir > 0 such that B,(x) N A = {x} for all x € A

® Ais relatively dense 3R > 0 such that Bg(0) + A covers X.




A point set P(x, T) = AN Br(x) for x € A'is called T-patch.




A local criterion for regularity of a system of points.

DEFINITION: T-PATCH
A point set P(x, T) = AN Br(x) for x € A is called T-patch.

THM(DELONE,DOLBILIN,SHTOGRIN,GALIULIN;’76)

Let A C RY be Delone. There exists Ty > 0 such that if all
To-patches are equivalent up to isometry then there exists a lattice
I < Isom(R9) and x € A s.t.

N =Tx.

Same paper: S", H".



A Delone set A € RY is called Meyer if A— A C A+ E for E C R
finite.

This generalizes lattices:

e |f E is trivial, A is a lattice.

® A is Meyer if and only if A and A — A are Delone. (Lagarias)

Any Meyer set is a subset of a cut-and-project quasicrystal.




Cut-and-Project sets

DEFINITION: CUT-AND-PROJECT SCHEME
The data (£, R9 R™) defines a cut-and-project scheme if
L is a lattice in the group R x R™
T = Tpd, Tint = TRm Natural projections satisfy
(I) =| is injective
(D) mint(L) is dense in R™.

DEFINITION: WINDOW AND CUT-AND-PROJECT SETS
Window W C R™ bounded and define the cut-and-project set

AW, L) == (£ (R x W)

If W has non-empty interior, call it cut-and-project quasicrystal. It
is Meyer.



(Regular) boundary of W has zero measure
For any T-patch P = P(y, T) = AN By(y) define

freqpa(P) = lim #{x € AN B(0) : P(x, T) ~py 77}.



Patch Counting

For any T-patch P = P(y, T) = AN Br(y) define

freqn(P) = lim T EANB(0): P(x, T) ~ps P}

t—o0 td

THEOREM ON PATCH FREQUENCY ASYMPTOTICS

Fix d +m = n, d > 2. There exists x > 0 such that for a random
cut-and-project quasicrystal A of (£, R R™) of K-type SLy or
Sp, we have

#{x € AN B:(0) : P(x, T) ~pa P} = freqp(P)t? + O(t7~%).
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Spaces of quasicrystals



Spaces of quasicrystals

CONSTRUCTION OF MARKLOF AND STROMBERGSSON
® A = A(L,W) cut-and-project quasicrystal of (£, R, R™)

® Suppose L = gZ" € X, = SLp(R)/SLA(Z) for g € SL,(R)
and consider SL4(R) < SL,(R) top-left block.

® SLy(R)L = L'L for some L < SL,(R) (Ratner)

The space of quasicrystals associated to £
Q={ANy,W):yel'L}

with probability measure pg (push forward of my/, under
y = Ay, W)).

MS actually consider ASL4(R)-orbit closure. See also El-Baz for
Adelic case.
For my:,-a.e. y defines a cut-and-project scheme i.e. it holds
(I) |, is injective
(D) mint(L) is dense in R™.



Chabauty-Fell topology

The space of quasicrystals associated to £
Q={Ny,W):yel'L} ce®Y)

where €(R?) is the space of closed sets on RY equipped with the
Chaubauty-Fell metric,

d(Mo, A1) = max (1, inf (/\,- N B1(0) C Av-i + B:(0); i =0, 1))

PROPOSITION

V: X, = SL,(R)/SLn(Z) — €(RY), L+ AL, W)
is Borel, and continuous when it (£) N OW = 0.



The space of quasicrystals associated to £

Q={Ay,W):yel'L=SLg[R)L} C ¢(RY)

V: X, =SL,(R)/SL,(Z) — €(RY), L~ AL,WV)
is Borel, and continuous when min:(£) N OW = .

If W is regular then my/z(minte(£) NOW # 0) =0

un = V,.my: . is a Borel probability and W, is continuous at my/ .




Ergodicity implies Solidarity

SOLIDARITY THEOREM

Suppose i on €(R?) is SLy(R)-ergodic probability gives positive
mass on cut and project sets with regular windows.

Then p = pg for some Q.

In particular, there is a single internal space and window that give
rise to its support.

PROOF.

By the Howe-Moore Theorem, i is g; ergodic (g one-parameter
diagonalizable subgroup)
By the Birkhoff Ergodic Theorem, for p a.e. A

fp— (5 —
«Opndt
T / (gt) A M



Ergodicity implies Solidarity

PROOF.

By the Howe-Moore Theorem, p is g; ergodic (g one-parameter
diagonalizable subgroup)
By the Birkhoff Ergodic Theorem, for p a.e. A

1 T
7/ (&t)«0ndt — p
0

By invariance of U = G;; and Fubini's theorem, a.e. A, my-a.e.
u € U, u.\ is Birkhoff generic.
Hence for Q C U compact, non-empty interior

1 T
*/ /(gtu)*5Adedt —
T Jo Ja



Ergodicity implies Solidarity

PROOF.
For p-a.e. A

1 T
*/ /(gtu)*5Adedt — W
T Jo Ja

Take such a generic A = A(La, W) = cA(L, L W) for some
unimodular £ < R" and regular window W < R™.

Consider the same ergodic average, but on SL,(R)/SL,(Z)
replacing A with L.

It converges to some homogeneous measure m;/, by a theorem of
Shah!

Since any such my/, is a continuity point for W, by previous

corollary, also the original ergodic average converges to W.my/ .
O



What are the spaces of quasicrystals?

THEOREM I

Write Y = SL4(R)g SL,(Z) = L'L = gLSL,(Z). Then L is
isogeneous to the real points of an almost Q-simple linear algebraic
group L.

THEOREM II

LL is isogeneous (over C) to either a product of SL(C)s or
Spk((C)S

WHAT WE REALLY NEED

What Q-groups do really appear?
For the remainder of this talk: IL = Resgg(SLq)



Lemma about rational invariant subspaces

(I) 7| is injective
(D) mint(£) is dense in R™.

(I) aND (D) mvpPLIES (L) LEMMA

A vector space V < R" is called L-rational if V N L is a lattice in

V.
The following implications hold.

a. (D) = R is not contained in a proper L-rational subspace.
b. (I) = R™ contains no non-trivial £L-rational subspace.
Define
(irred) There exists no proper L-rational subspace of R” that is
SLg(R)-invariant
c. (1) and (D) = (irred).



(irred) implies semi-simple

PROOF.
® Shah '91: L minimal Q-group generated by unipotents
containing H' = g1 SL4(R)g
® L is semi-simple: Let U denote the (unipotent) radical of L.
By Shah it is also defined over Q.

e VU is a rational subspace by Zariski density of U(Q). Cannot
be by previous lemma, so it must be trivial.

® Since U unipotent it does have an invariant subspace, so it U
must be trivial.

O



SL4(R)gSLn(Z) = 'L = gL(R) SL,(Z). Claim: L is Q-simple

PROOF.

® Decompose L into Q-simple factors T; which we further split
in R-simple factors S;.

® Need to show that H' = g 1 SL4(R)g < S; = S;(R) for some
i

® Decompose R" into irreducible representations of H’, i.e.
R" = g—le D g—lRm_

® Project H' to S, call it H.. T={i: H; # e}. Let
Ly = [I;ez Si- Contains H'.

e Let V; isotypical reps of Ly, assume g~ 'RY < V;. Then H' is
inside intersection of kernels of Ly/|v.,.

® |ntersection of these kernels is a normal subgroup of L
hence equal to some subproduct of S;, i € Z, contains H’, so
it is all of Ly/. Hence Vs trivial rep.

O



SL4(R)gSLn(Z) = 'L = gL(R) SL,(Z). Claim: L is Q-simple

PROOF.

Need to show that H' = g7 1 SL4(R)g < S; = S;(R) for some
i. So far: R" = V; @& W where W trivial rep of Ly and
g_le < W.

H! = 7ts.(H'"), H! also preserve g 'R9 (argument using
regular elements h =[] h;).

Assume h; € Hj action on g 1R non-trivial, take some
hq-invariant proper subspace V" of g71RY.

Since H. ;-invariant, must be trivial w.r.t H; ~ SL4(R).

Use here that: 1) simplicity 2) classification of reps of SL4(R)
3) and that dim of V" is < d.

Get non trivial kernels in S-1, so kernels equal to S; and S;
act trivally on V" and hence on V""" = span(5;V").

So V" is Lyy-invariant. But note that since H' < Ly, Ly
acts irred on V4, hence Vj = V",



® Hence S-1 acts trivial on V4, hence on R" by previous slide.
Hence Ss1 didn't exist in the first place (definition if Z), and
H < 5.

O



If L is almost Q-simple and simply connected, there exists a field

K and an absolutely almost simple simply connected group G
defined over K such that I ~q Resg /q(G).

If G as above contains a conjugate of the top left SLy(C) then G
is either of type Ay or Cy.




Restriction of Scalars

Let K be a number field.

Let G be a K-group.

Then there is a Q-group Resg|g(G) such that
if o; : K — C fields embeddings then

Resg|o(G)(Q) = {01(g).---,04(g) : & € G(K)}

(similarly, with Z and O replacing Q resp. K)
For any field K’ containing all ¢;(K),

Resyo(G)(K') = [[ G7(K).



Restriction of Scalars

Concretely, K = Q(v/2), G = SL,(C).
K is a Q vectorspace. In fact algebra.

b:a+ b2 [Z 23”1 € Mat,(Q)

_, [a B [e 48
AD — BC =1 [C D] Lb(C) ¢(D)]€SL4(C)

Image of ¢ can be simulatenously diagonalized (over K), ¢(z) has
Eigenvalues z = 01(z), Z = 02(2).
Applying this diagonalization, and a permutation matrix,

01(A) o01(B)
P(A) ¢(B) 01(C) o1(D) o o
l ] - 1 m(A) oa(B)| €32 (CPSL (T

02(C) 02(D)



Minkowski Space

e K is a totally real number field of degree D. O ring of
integers.

e Field embeddings o : K — R, extend to Kk — RX.

¢ L={(01(v),...,0p(v)) : v € OK} < RP¥ lattice

EXAMPLE: VERTICES OF AMMANN-BEENKER TILING
K= Q(ﬁ) k = 2 then consider
(

{(o1(v), 02(v)) : v € Z[V/2]?} < R* with basis
10 vV2 0
01 0 V2
1 0 —v2 0
01 0 —V2

Ammann-Beenker: L finite index sublattice of above (s.t.

vi — v € V2Z[V?2)]).
d=m=2
W =Octagon.

See Baake-Grimm or Hammarhjelm.



Demo



f € C(RY). Define the Siegel-Veech transform, for A € 9,

fny= 3 f(v)

veA—{0}

pa(f) = cmgs(f)

Reduces to Siegel formula on (sub-)space of lattices, applied to
f x ]lW



Setup

K totally real numberfield, O its ring of integers and
oi : K — R embeddings, i = 1...D = deg(K)

Ks = 1K, =[IR=R"
09 = Lo < K¢ lattice embedded via v — (o1(v),...,op(v))
G =SLy(Ks) = SLg(R)P, T =T = SLyg(O) < G, embedded
via y = (01(7), -, 70(7))-

GOAL: ROGER TYPE BOUNDS
Suppose f € Cc(R?), A€ Q =VW(G/T) = {ML,W): L € G.O},
pa = Wamgr then uq(f?) = mga(f)? + O(mga(f)).

What | will prove: If f =f--- x fp : R" — R characteristic
function and f Siegel transform on R" as usual then

mer(F2) = mea()? + O(mga(f)).



? € Ld+6(mG/|-).

This is strict.
Eskin-Margulis-Mozes 99 for K = Q.



Integrability of Siegel Transform

INTEGRABILITY
If f € C(RIP="), then
Fe L9 (mstke)/ro)

where SLy(Ks) = SL4(R)P and

Fo ={(01(7),-.-,04(7)) : 7 € SLa(O)}.

PROOF.
* Define a(£) = max (covol(L')™1: £/ < £). Then f < av.
o If L = gZ" = kanZ", then a(L) < a(aZ") where

a =diag(a1,...,an) (via Siegel domain)
or, if \; Minkowski's successive minima, then
alL) =< Ay« iy, Where ig last index such that \j; < 1.

® Denote Ay diagonal matrices in SL4(RR)



Proof of Integrability of Siegel Transform

PROOF.
® Define a(L£) = max (covol(L')~1: £’ < L£). Then f < .
o If L =gZ" = kanZ", then (L) < a(aZ") where

a=diag(a1,...,an) (via Siegel domain)
or, if \; Minkowski's successive minima, then
a(L) =M - iy, Where iy last index such that \j, < 1.

® Haar measure on SLy4(R) in KAyN coordinates given by
dg = dk da p(a) dn
where p(a) = |det Ad(a)|u| = II;; :’—J’
and da = [T} da—‘j"
® Remains to find a fundamental domain ( or rather surjective
set) for p.



Proof of Integrability of Siegel Transform

PROOF.

® Remains to find a fundamental domain ( or rather surjective
set) for ['»: Follow Siegel domain proof for .

® [ » stabilizer of the lattice
Lo ={o1(v),...,op(v):v e O}

® Upper unipotents of ['» (uniform) lattice in upper unipotents
of SL4(R)P

® By Minkowksi successive minima + Gram Schmidt g = kan
with, a; < A\j(aLo), aj+1/a; > 1 in each each SL4(R) block
(soi=jd.....(j +1)d —1).

® Have units in O, hence have non-compact diagonal subgroup
inlo.
Can find u € O* such that for any z € K, |o(zu)| < N(z)/P

® Can be used to find v € 'p such that for any a € Ag,a'y has
(av)jd < (ay)1g for j=1...D

]



Proof of Integrability of Siegel Transform

PROOF.

® |n summery: Instead of integrating over D-fold product of
(Ag)c = {2—*11 > c}, only need to integerate over one (Ag)c
and D — 1 many compact neighborhoods of identity in Ay.

® Have now explicit formula of integrand and measure, so an
explicit calculation (identically to EMM99) remains, giving
same integrability exponent as Z case.



Moment Bounds

® The probabilistic almost all counting result uses bounds on
second moments (Borel-Cantelli)
® This is given by Rogers type formula:

RoGER TYPE FORMULA
Suppose h € C.(RP").

Ph(L) = > h(vi,...,v)

Vi Vp
If Ph(L) € LY(y) for p L-invariant homogeneous measure

u(Ph) =Y mi(h)

where 7; are Lebesgue measures supported on L-orbits on RP”, and
hence Lebesgue on some some hyperplane.

® Riesz representation Theorem (directly from integrability)
¢ Unfolding a la Weil (Something to check: finite volume)



Moment Bounds

ROGER TYPE FORMULA
Suppose h € C.(RP").
Ph(L) = > h(vi,...,vp)

VieosVp
If Ph(L) € LY(y) for p L-invariant homogeneous measure
u(Ph) = > 7i(h)

where 7; are Lebesgue measures supported on L-orbits on RP”, and
hence Lebesgue on some some hyperplane.

Rogers: ©1 = myx,, n > 2. Macbeath-R Determines what exactly
the 7; are Generalizations by Yu, Kelmer-Yu, Ghosh-KY, Han to
other groups, congruence lattice, S-adics... For application suffices
to get bound on volume growth. Schmidt n = 2. See
Kleinbock-Skenderi "Rogers type groups"



Moment Bounds

RoOGER TYPE FORMULA
Suppose h € C.(RP™).

Ph(L) = Y h(vi,...,vp)
Vi, Vp

If Ph(L) € LY(y) for pu L-invariant then

w(Ph) = _7i(h)

where 7; are Lebesgue measures supported on L-orbits on RP”, and
hence Lebesgue on some some hyperplane.

Get useful moment bounds for Siegel transform of f € C(R"):
wu(fP) = mpa(f)P + Trest(FEP) with T,es: lower order volume
growth.



Weil Unfolding

Let G; C Gy unimodular, 'y C G lattice, 1 = > N Gy, and for
any v € I, denote its coset vI'; € T'2/T'1 by [v].

WEIL UNFOLDING THEOREM

Assume that 1 is a lattice in Gj.
For any F € Ll(Gg/Gl,mG2/Gl), define

Fgl2)= Y. F(gv).

[v]erz2/T1

Then ﬁ € Ll(G2/r27mGQ/r2) and

F dm = / F dme, /c..
/G2/F2 /T2 G/ Gy /G

G = Gy. Gy = Stab(v, w), for (v,w) € 0.



In more detail: mSLd(R)D/rO(?Z) =Y 1i(f ®Ff) = mgoa(f)? + O(mgoa(f))

e Decompose pairs of vectors {(v,w) € O x 09} in
SL4(O)-orbits.

® Sum over these single orbits correspond to "primitive Siegel
transform"

® Unfolding identifies this discrete measure with measure on
SL4(R)P modulo stabilizer of (v, w)

® Three types: w =0, v € K*w, linear independent

® SL4(K) < SLyg(Ks) = SLg(R)P transitive on linear
independent vectors of O¢ < R This is the main term,
corresponding to T; = Tmain = Mpgadd
stab(v, w) = SLy_»(Ks) Ké(d_z) up to a conjugation in
SL4(K). (namely, by some matrix having (v, w) as first two
column vectors)
Intersects SL4(O) in a lattice. So Weil applies.



In more detail: mSLd(R)D/rO(?Z) =Y 1i(f ®Ff) = mgoa(f)? + O(mgoa(f))

® Other orbits (av, bv), for a, b € K.

® Plugging in (product) balls, can calculate explicitely when
integrating against "dv" since correlation of two scaled balls is
again a ball.

e Can move to general functions by using Rogers /
Brasscamp-Lieb-Luttinger symmetrization formula (see
discussions in Skenderi)

® Alternatively, do a trick of Schmidt f(x)f(7x) < f(3x) for f
characteristic function.

® In any case, need some care of showing > ¢; < oo (follows
from integrability, i.e. the abstract Rogers formula).

® Caveat: f must be a product function fi...fp resp. get Roger

type bound only for the RMS measure, not general
homogenous orbit.



Symmetrization

THEOREM (ROGERS, BRASCAMP-LIEB-LUTTINGER] )

Suppose f; : RY — R, j=1,..., are nonnegative, and {ajm} an
£ x r-matrix. Then

/Rd)r fl Z alme g(z agmxm)dde(xl) 000 dde (Xr)

/Rd)’ (D~ atmxm) - (D amxm)dmga(x1) . .. dmga(x;)

where given a function f : RY — R, the function f* : RY — is the
symmetric decreasing rearrangement, i.e. if f = 14 then
f* = 1p,(0) where |A| = |B,(0)]



Bounding Test

® Up to conjugation in SL4(K), stabilizer of SL4(Ks) at
(av,bv), v € 09, a b€ Kis SLy_1(Ks) x K&

® SLy(Kg)-orbit at e = (av, bv) in K29 is a (K-rationally)
skewed Kg with Lebesgue measure being a multiple ¢, of a
push-forward of a fixed Haar measure (xa, xb)*ng

® Test(f ®F) =3, ce(xa, xb)*ng(f® f)
o (xa,xb)amyy(f @ F) = [ (aw)f(bw)dmyy(w)

= /RdD fi(c1(a)x1) ... fp(op(a)xp)fi(oi(b)x1) ... p(oq(b)xp)

dde(Xl) e dde (XD)

® Apply symmetrization to £ =2D, r = D



Bounding Test

® By the previous, if f =[] 14, |Ail = Vi = |B,,(0)|
7_rest(f ® f)
<Ye [, I 16,0/(0(2)x) 1,0 (0i(b)x)dmas (x)
¢

= [[max(oi(a)l, |oi(b))) "9 Vi = creseriy(f)

® Crest < 00 since the inequality < is equality if f is a product of
balls, and Tyest(f ® f) < 00



Back to Cut and Project sets

® Got Rogers bound for "product sets " A; x ... Ap

® This suffices for the application, which needs A x W where
|A] — o0.

® |ndeed, take Ay X -+ X Ap D W to dominate in Tyest. These
are fixed, hence absorbed into the constant.
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