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Abstract. We study a novel disk-sampling algorithm. Similar to the rejection method,
it uses a square to produce samples. Here the inscribed square is used. Symmetries are

used to cover disk segments outside the square.

1. Introduction

Sampling inside the circle is one of the oldest sampling schemes, with variants discussed
as early as [Neu51]. The two most common strategies are the polar method and the rejection
method where the circumscribed square of the disk is sampled until a point falls inside the
disk. Computationally, the rejection method suffers from branch divergence, while polar
coordinates require the calculation of trigonometric functions and a square root.

The disk is useful for sampling other distributions. Box-Muller use the disk for sampling
from the normal distribution [BM58]. Higher-dimensional spheres can also be bootstrapped
from the disk [Mar72] resp. from the normal distribution [Mul59]. Specific domains like
computer graphics have a particular interest in the disk driven by current advances in ray
tracing [PJH23].

We present a Markov chain whose stationary measure is the uniform probability on the
disk. Unlike rejection sampling, our method first samples from the inscribed square. We
utilize symmetries to cover the remaining segments of the disk outside the square. The
approach uses a fixed number of conditional statements. This makes it more amenable to
vectorization than rejection sampling in environments where trigonometric functions are not
hardware-accelerated.

2. New algorithm

We now present details to the algorithm. We shall sample from the disk of squared
radius 2. We choose this particular radius since most constants from now on are integers.

Consider the square S = [−1, 1] × [−1, 1] inscribed in the disk of radius
√
2, D =

Disk(0,
√
2). Consider further the four disks Di = D + vi which are translates of D where

v1 = (2, 0), v2 = (0, 2), v3 = (−2, 0) and v4 = (0,−2). Note that Di ∩D is a disk segment
contained in S. Then Ei = (Di ∩D)− vi is one of the disk segments of D \S. In particular,

D = S ⊔
⊔4

i=1 Ei. For every point p ∈ Di ∩D we let p′ = p − vi ∈ Ei, the adopted variate
of p. Having the notation in place, the algorithm can be described as such:

• Let p be a uniform sample on S.
• If p ∈ Di, cache p′ ∈ Ei as immediate output for the next functional call.
• Return p.

We give a pseudo-code implementation in Algorithm 1. The check p ∈ Di reads ∥p−vi∥2 <
2, which has common expressions for all four cases. The conditional statements can be
turned into arithmetic operations suitable for SIMD instruction sets, see [Rüh24b].
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We call this algorithm adoption method, since we use the inner segments to find the
adopted samples in Ei of S.

These adopted variates are not unlike antithetic variates where symmetry also plays a
key role. Instead of using translations, one can easily envision to deploy other symmetries.

Algorithm 1 Adoption Algorithm

1: Output: Sample (x, y) in Disk(0,
√
2)

2: Static variables: Initialize x′ ← 0, y′ ← 0
3: procedure Adoption
4: if x′ ̸= 0 or y′ ̸= 0 then
5: x← x′, y ← y′

6: x′ ← 0, y′ ← 0
7: return (x, y)
8: end if
9: x← random(−1, 1)

10: y ← random(−1, 1)
11: s← x2 + y2 + 2
12: if s < 4x then x′ ← x− 2, y′ ← y
13: else if s < 4y then x′ ← x, y′ ← y − 2
14: else if s < −4x then x′ ← x+ 2, y′ ← y
15: else if s < −4y then x′ ← x, y′ ← y + 2
16: end if
17: return (x, y)
18: end procedure

3. Markov Chain

The algorithm can be understood as an ergodic Markov chain whose stationary measure
is m, the uniform probability measure on D. We will deduce that a sequence of samples
{xi} equidistributes.

Let C be the complement of the ES
i = D ∩Di inside S. Label all the partition elements

C, {ES
j }, {Ek} by Pi. Let mi be the uniform probability measures on Pi. These are the

conditional measures of m restricted to Pi.
The transition probability ρ(dx, y) of x given y (for each fixed y this is a measure) is

easily seen to be

ρ(dx, y) = miy (dx)pix,iy

where iy, ix are the indices for which y ∈ Piy , x ∈ Pix and pix,iy is the transition probability
of a finite Markov chain on 9 symbols. Let m(E) denote the area of any of the circular
segments.
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Let a = m(E)/m(S) and note 1− 4a = m(S)−4m(E)
m(S) = 1−8m(E)

m(S) = m(C)/m(S). Then

P = (pji) =



1− 4a a a a a 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1− 4a a a a a 0 0 0 0
1− 4a a a a a 0 0 0 0
1− 4a a a a a 0 0 0 0
1− 4a a a a a 0 0 0 0


.

Solving πP = π, we find the stationary distribution

π = (m(C),m(E),m(E),m(E),m(E),m(E),m(E),m(E),m(E)).

This chain is ergodic, and we can deduce convergence from that fact: Let xi denote the
outcomes of the sampling and let f : D → R. We need to show that, almost surely,

1

n

∑
i<n

f(xi)→ m(f).

Reorder the sum according to which Dj each xi falls into. Relabel them xjk and let nj be
their cardinalities:

1

n

∑
i<n

f(xi) =
∑
j

nj

n

1

nj

∑
k<nj

f(xjk)

For each fixed j, the sequence xjk are sampled from mj . By the the law of large numbers
for iid random variables, 1

nj

∑
k<nj

f(xjk) = mj(f) + o(1) as nj → ∞. By the ergodic

theorem for Markov chains,
nj

n = πj + o(1) (in particular nj →∞).
Combining these two facts,

1

n

∑
i<n

f(xi) =
∑
j

πjmj(f) + o(1) = m(f) + o(1).

4. Alias sampling

We can remove the requirement to keep memory of the previous sample by applying ideas
of the alias method [Wal77]. When sampling uniformly in S, the probability of sampling

inside C is m(C)
m(S) . We wish to decrease this probability to be m(C) by sampling again with

probability q. This results in an equation for q:

m(C) =
m(C)

m(S)
(1− q) +

m(C)

m(S)
q
m(C)

m(S)

which gives q = 2
π (= m(S)). Additionally, each ES

i gets Ei as its alias with alias proba-

bility 1/2 setting up the following rule: If p ∈ ES
i , with probability 1/2 we take p, otherwise

p′.
To see why we did not give C an alias to the Ei or ES

i directly, we note that we first
need to produce samples in such sets – by sampling S.

We give a pseudo-code implementation in Algorithm 2. We use that the condition p ∈ C
can be checked with x2 + y2 + 2 ≥ 4max(|x|, |y|).
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Algorithm 2 Adoption Algorithm without memory

1: Output: Sample (x, y) in Disk(0,
√
2)

2: procedure Adoption
3: x← random(−1, 1)
4: y ← random(−1, 1)
5: s← x2 + y2 + 2
6: if s ≥ 4max(|x|, |y|) and random(0, 1) < 2

π then
7: x← random(−1, 1)
8: y ← random(−1, 1)
9: s← x2 + y2 + 2

10: end if
11: if s < 4max(|x|, |y|) and random(0, 1) < 1/2 then
12: if s < 4x then x← x− 2
13: else if s < 4y then y ← y − 2
14: else if s < −4x then x← x+ 2
15: else if s < −4y then y ← y + 2
16: end if
17: end if
18: return (x, y)
19: end procedure

5. Monty Python sampling

One can also interpret this method as a variant of the Monty Python method introduced
by Marsaglia and Tsang [MT98]. In this method, a probability distribution is cut and
rearranged to fit a rectangle, and then rejection sampling is applied. By taking the inscribed
square of the disk, we cut the disk segments that lie outside of the square and translate them
inwards (adopted variates by translation). Alternatively, we fold the segments inside, leading
to adopted variates by mirroring them at the boundary of the square. Then a strategy how
to do sample in a one-to-many manner has to be devised for which we gave two possible
solutions.

6. Application to low discrepancy sequences on the square

In computer graphics, there is often an interest in low-discrepancy sequences [Shi91].
These are abundant for the square, with classic examples including Sobol [Sob67] and Halton
[Hal64]. For more modern approaches, see the Siggraph notes [Owe03]. If we are given a
map from the square to the disk, we can warp these constructions to the disk. One such
map is the concentric mapping, which is area-preserving with little distortion [SC97]. For
an overview, see the Pixar Technical Memo [Chr18].

Clearly, instead of generating (x, y) randomly from the inscribed disk, we can take it
from a low-discrepancy sequence. Since the map is locally isometric, the low-discrepancy
property is preserved. To avoid seams that may appear at the edges of the inscribed square,
one should prefer a low-discrepancy sequence on the 2-torus R2/Z2, where sides of the square
are identified.
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