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Any Crystal structure (i.e., a structure of an infinite ideal mono-crystal)
is regular. The word “regular” means that the complete group of motions
of the space that superpose this structure with itself is discrete (which is
evident in view of the atomic structure) and has finite fundamental domain.
This last circumstance should have been considered the main principle of
crystalography, since it lies in the foundation of the geometric crystalogra-
phy, while its physical cause haven’t been discovered yet.

In general, a regular system of points (an orbit) is a set of points ob-
tained from some point of the space by means of some subgroup of the space
motions. But in crystalography, as we have just mentioned, discrete groups
G and finite fundamental domains have a special role. Therefore, later on
by regular system we mean only orbits with respect to such groups. Any
crystal structure obviously consists of a finite amount of regular systems of
atoms, related to its group G.

A regular system of points, in view of the discreteness of G and the
finiteness of its fundamental domain, is an (r,R)-system (r and R are some
positive real numbers). Let us remind 1 that an (r,R)-system is a set of
points of the space that satisfies the following conditions:

1. The distance between any two distinct points of the set is not less than
r;

2. In the interior and on the boundary of any ball of radius R, wherever
its center is, there is at least one point from the set.

For any given (r,R)-system, there exists a maximal number that satisfies
condition (1) and a minimal number that satisfies the condition (2). Below,
each time talking about an r,R-system, we will mean that r and R are these
extremal values of the given system. Of course, not every (r,R)-system is
regular. In order for (r,R) to be regular, it is necessary and sufficient, as
Fyodorov said, that from each point of the system all the other points would
“look the same” as from any other point. The same was more rigorously
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formulated by Hilbert and Con-Fossen. Let us take an arbitrary point of the
system and connect it to all the other points by segments. This way, for the
given point we obtain an infinite “spider”. The system will be regular if and
only if for all the points these “spiders” and congruent. In other words, for
any two points of a regular system there exists a motion that transfers the
first point to the second one and superposes the whole system with itself.

The goal of the current work is to show that for all the three spaces (Eu-
clidean, spherical, Lobachevsky space) of any dimension, for the regularity
of an (r,R)-system it is enough to have congruence of certain not big finite,
so called stable “spiders” of all of its points.

1 A stable spider of a point of an (r, R)-system

Let S be an (r,R)-system in the space En, where En is an n-dimensional
that is either Euclidean, or Lobachevsky, or spherical.

Consider a ball of an arbitrary radius ρ centered at a point A ∈ S. The
set of points lying inside or on the boundary of this ball would be denoted by
SA(ρ), and the group of rotations of En around the point A that superpose
SA(ρ) with itself would be denoted by HA(ρ).

For any ρ, the set SA(ρ) is finite, in view of the r-property of S. Let us
show that for ρ = 2R the set SA(2R) is n-dimensional affine independent 2,
from which it will follow that the group HA(2R) is finite.

Indeed, any point of S that is situated inside or on the boundary of
some ball of radius R, on the boundary of which lies A, belongs to SA(2R).
In view of the r-property and the R-property of the system, in or on the
boundary of such a ball there is a point A1, with A1 different from A. This
is because if no point of S except A was belonging to this ball, it would have
been possible to increase the ball, first slightly moving it from the point A,
such that the ball would not contain inside or on its boundary no points of S.
And this contradicts condition (2). Analogously, inside or on the boundary
of a ball of radius R that is tangent to the segment AA1 at the point A,
there exists a point A2 that is different from A, such that the vector AA2 is
not co-linear to the vector AA1. Inside or on the boundary of a ball of radius
R that is tangent the two-dimensional plane AA1A2 at the point A, there
exists a point A3, that is different from the point A and such that the vector
AA3 is not co-planar to AA1A2, etc. This way we obtain an n-dimensional
affine-independent set A,A1, A2, . . . An, where all Ai belong to SA(2R).

Let us note that in a spherical space, the existence of the point Ai+1,
for 0 ≤ i ≤ n − 1, A0 = A, that lies outside of the plane A0A1 . . . Ai,
will be guaranteed for R < c/4, where c is the length of a big circle of the

2[Transl.: The original term is “n-dimensionally placed”, also called “reper” in the
proof. The set A0, A1, . . . , An is called (n-dimensional) affine independent if the set {(Ai−
A0)}i is linearly independent.]
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sphere under consideration. Therefore, we will assume that in the case of a
spherical space the inequality R < c/4 takes place.

Clearly, HA(ρ) ⊇ HA(ρ′) when ρ < ρ′. Since the group HA(2R) is finite
and the system S is discrete, there exists a value ρ0, such that for ρ ≥ ρ0 the
group HA(ρ) is finite, and for ρ < ρ0 the group HA(ρ) is infinite. Clearly,
r ≤ ρ0 < 2R.

Let us show that for any point A of an (r,R)-system S, there exists a
number ρ1, bounded from above in terms of r, R and n, such that HA(ρ1 +
2R) = HA(ρ1). Later on, by such ρ1 for a point A we would mean the least
such value. Indeed, denote the order of the group HA(ρ), which is finite in
case ρ ≥ ρ0, by hA(ρ). The function hA(ρ) is defined for ρ ≥ ρ0 assumes
natural values and does not increase. The graph of this function is clearly
a step-graph, with the heights (above the ρ-axis) of the steps are natural
numbers, and the height of each step, by Lagrange theorem on subgroups,
is a divisor of the height of the preceding step. Therefore, the number of
steps is finite, and in any case does not exceed ν+ 1, where ν is the number
of prime divisors of hA(ρ0). The last step is obviously infinite. As ρ1 one
should take the beginning of the first step whose length (along ρ) is greater
than 2R. The beginning, ρ1, of such a step satisfies ρ1 < (ν + 1)2R, as it is
easy to see.

The set SA(ρ1 + 2R) will be called the stable set of the point A and we
will denote it by SA. The set SA(ρ1) will be called the pre-stable set of A
and we will denote it by S̃A. The set of segments connecting the point A to
all the points of SA (or S̃A) will be called the stable spider (or, respectively,
pre-stable) or the point A, and will be denoted by PA (or P̃A). The theorem
that we want to prove is as follows:

Theorem. Let S be an (r,R)-system of points in the space En, where En is
an n-dimensional space that is either Euclidean, spherical, or Lobachevsky.
For S to be a regular system, it is sufficient for the stable spiders of all
its points to be congruent, and then the system is uniquely defined by this
spider.

2 On 2R-chains in an (r, R)-system

. A 2R-chain in the system S is a sequence of points from S, such that
the distance between any two adjacent points from this sequence does not
exceed 2R.

Lemma. Any two points A and B from an (r,R)-system S can be connected
by a 2R-chain.

Indeed, if the distance between A and B does not exceed 2R, then A,B is
such a 2R-chain. If the distance between A and B exceeds 2R, consider the
ball of radius R that has A on its boundary and its center on the segment
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AB (for a spherical space - the shorter AB). In view of the R-property,
inside or on the boundary of this ball there lies a point A1 of the system S,
different from the point A, with AA1 ≤ 2R and A1B < AB. If A1B ≤ 2R,
then A,A1, B is the sought-for 2R-chain. If A1B > 2R, then consider the
ball of radius 2R, that has the point A1 on its boundary and its center on
the segment A1B. Inside or on the boundary of this ball there is a point A2

of S, different from the point A1, where A1A2 ≤ 2R and A2B < A1B, and
so on. This process, clearly, will terminate, since all the points A1, A2, . . .
obtained this way are distinct, lie inside a ball of radius AB centered at B,
and there is a finite amount of such point from S, in view of the r-property
of the system S.

3 Proof of the Theorem

Suppose that for the (r,R)-system the stable spiders of all its points are
congruent.

Consider two points A and B of the system S and denote by ∂ a motion
of the space En that transfers the stable spider PA to the stable spider PB.
Let us prove that under the motion ∂, an arbitrary point C of S is moved to
some point D of S. To this end, connect the points A and C by a 2R-chain
AA1A2 . . . AlC. The point A1 belongs to SA and therefore under the motion
∂, the point A1 is transfered to some point B1 of SB. Clearly, a ball of radius
ρ1 centered at A1 lies inside a ball of radius ρ1 + 2R centered at the point
A, while the ball of radius ρ1 centered at B1 lies inside the ball of radius
ρ1 + 2R centered at B. Therefore, the pre-stable spider P̃A is transfered
to the pre-stable spider P̃B under the motion ∂. But in this case, also the
stable spider PA is transfered to the stable spider PB under the motion ∂,
which follows from the congruence of the stable spiders and from the fact
that every rotation of the pre-stable spider on itself, superposes also the
stable spider of this point with itself.

Thus, the motion ∂, that transfered PA into PB also transfers PA1 into
PB1 . Repeating the same considerations for the points A1 and B1, we will
get convinced that the motion ∂ transfers the point A2 ∈ SA into the point
B2 ∈ SB, the pre-stable spider ˜PA2 into the pre-stable spider ˜PB2 , and,
consequently, the stable spider PA2 into the stable spider PB2 , and so on.
Therefore, the motion ∂ transfers the point C ∈ S into some point D ∈ S.

Since the motion ∂−1 transfers the stable spider PB into the stable spider
PA, by analogous considerations, the motion ∂−1 transfers any point D ∈ S
into some point C ∈ S. In sum, we get that the considered motion ∂
superposes the (r,R)-system S with itself. Since A and B are arbitrary, the
proof is complete.

Remark. The question whether for a system to be regular even smaller
spiders are sufficient was not ascertained by us. But it has to be mentioned
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that the congruence of too small spiders is insufficient. For example3, already
on a two-dimensional sphere there is an (r,R)-system of points which is
non-regular, despite all its PA(2R) spiders being congruent, although these
spiders are in some sense not that small. Analogous examples exists also in
the plane.

The authors think that the proven geometric theorem can be useful for
finding out the physical reasons for regularity of the atomic structure a
mono-crystal.
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