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2 V.A. Rokhlin

Introduction

This article reproduces, with some additions, the second part of a
course of lectures at Leningrad University in the academic year 1962/63,
Its topic is a new development in ergodic theory connected with the concept
of entropy. The first part of the course was concerned with more classical
problems fully covered by the literature. Lecture notes by R.M. Belinskili,
S.M. Belinskii, and S.A. Yuzvinskii serve as the basic text.

For the convenience of readers the article begins with a short account
of the necessary concepts of measure theory, classical ergodic theory, and
the spectral theory of operators. A detailed account can be found in
articles by the author [20], [21], Halmos’ s book [37], and Plesner’s
book [19]. Some statements, not explicitly contained in these works, are
proved. These preliminaries take up the first three sections.

LITERATURE. The theory expounded in this article is built up in
papers of Kolmogorov [13], [14), Sinai [30], Pinsker [17], Sinai and the
author [29], and the author [23], [25], [27]. Roughly, it can be described
as the general entropy theory of dynamical systems with discrete time.
Some important results, also concerned with this subject, are not contained
in this article; for example, Sinai’s theorem on weak isomorphism (see
[32], [34]) is not proved, Abramov's theorem on the entropy of the derived
automorphism (see [1]) and the theorem by Abramov and the author on the
entropy of a skew product are not even mentioned (see [1] and [5]). The
list of results not covered by this article would be much longer if we
were to consider all the entropy theory of measure-preserving transforma-
tions with invariant measure. It contains no general entropy theory for
flows ([14], [2], [31], [11]), nor the entropy theory of transformations
and flows that occur in neighbouring domains of mathematics: the classical
theory of dynamical systems (see (33], [35), [36], [7], [10], [15)),
probability theory (see [17]. [18]), number theory (see [25], [50]), and
topological algebra (see [30], [3], [28], [8], [38], [40]). The reader who
wishes to extend his knowledge, must turn to the works listed (see also
Yuzvinskii’s Appendix to this article and other articles in the series).

In conclusion, I must point out that there are already in the liter-
ature monographs dealing, partly or entirely, with the entropy theory of
measure-preserving transformations: the survey articles [24], [45], [33],
[47] and the text-books [43], [46], [42], [s1].

§1. Preliminaries from measure theory

l.1. It is assumed that the reader is familiar with general measure
theory. The measures that we shall encounter, are complete (that is, sub-
sets of sets of zero measure are measurable and have zero measure) and
normalized (that is, the measure of the whole space is 1)

A map from one measure space to another is said to be a homomorphism
if the inverse image of a measurable set is measurable and has the same
measure. A homomorphism is said to be an isomorphism if it is one-to-one
and the inverse map is also a homomorphism. If the spaces coincide then an
isomorphism is said to be an automorphism and an homomorphism an endomorphism.
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Two measure spaces are said to be isomorphic if an isomorphism can be
constructed between them. An endomorphism T in a space M is said to be
isomorphic to an endomorphism T, in a space M, if there exists an iso-
morphism S from M to M, such that T, = STS-1,

The most important principle of measure theory is that of neglecting
sets of measure zero. In accordance with this principle measurable sets and
endomorphisms are considered to within sets of zero measure or as we say
‘modulo 0’ (mod 0). For example, spaces M and M, or their endomorphisms T
and T, could be non-isomorphic, but could be made isomorphic by removing
from M or M, some set with measure 0, or an endomorphism T of a space M
that is not an automorphism might be made to be one by removing a set of
measure 0 from M., The addition ‘mod 0’ is often implied without being ex-
plicitly stated.

1.2. A countable system {Bs; a € A} of measurable sets is said to be a
basis of M if: .

a) for any measurable set X, there exists a set Y in the system of
Borel sets generated by {Bs; @ € A} such that Y DX and (Y - X) = 0;

b) for any two points x € M, y € M there exist an o € A such that
either x € By, y ¢ Ba, or x £ Ba, y € Ba.

A space with a complete normalized measure and a basis is said to be
separable. A separable space M is said to be complete with respect to its

basis {By; @ € A}l if all intersections [} Ea., where E, is either By or
a€A

M - B;, are non-empty. A separable space M is said to be complete mod 0
with respect to its basis {Bs; o € A} if it is a subspace of measure 1 of
a space M' that is complete with respect to its basis {Bs; o € A}, such
that Ba M M = Ba. If a separable space is complete mod 0 with respect to
one basis, it is complete mod 0 with respect to all bases. Such spaces are
called Lebesgue spaces and their measures, Lebesgue measures.

A Lebesgue space contains at most a countable set of points of positive
measure. If this set is empty, the measure is said to be continuous; if it
exhausts (mod 0) the whole space, the measure is said to be discrete. A
Lebesgue space with a continuous measure is isomorphic mod 0 to the unit
interval with the usual Lebesgue measure. The product of a finite or count-
able collection of Lebesgue spaces is a Lebesgue space.

A homomorphism of a Lebesgue space onto a Lebesgue space takes every
measurable set that is an inverse image into a measurable set. In particular,
a one-to-one homomorphism is an isomorphism. However, a measurable set that
is not inverse images can be taken by the homomorphism into a non-measurable
set.

If M is a Lebesgue space and C is a measurable set in M with (C) > 0,

B(X)
then the formula W.(X) = ——, where X is a set contained in C and measur-

able in M, turns C into a Lebesgue space with measure {.. This space is
said to be a subspace of M.

Henceforth it is assumed that all subspaces are Lebesgue.

1.3. Any collection of non-empty disjoint sets that cover M is said
to be a partition of M. Subsets of M that are sums of elements of a
partition € is called &-sets.
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A countable system {Bs; ® € A} of measurable &-sets is said to be a
basis of & if, for any two elements C and C' of &, there exists an @ € A
such that either C CB,, C' ¢ Ba or C ¢ Ba, C'C Bs. A partition with a
basis is said to be measurable.

We write £ &' if &' is a subpartition of &. £ & and &= &' are
both considered up to mod O.

For any system of measurable partitions {Z.} there exists a product
\/{,, defined as the measurable partition & satisfying the two conditions:
o

Cag & for all o; if Ea<g &' for all o, then & < &'. The product \/Fz
Fo=

is also denoted 4, &, ... &,..
For any system of measurable partitions {Ca}, there exists an inter-
section N\l,, defined as the measurable partition £ satisfying the two con-
o

L J
tions: Lo » & for all o; if La> &' for all @, then &3 &',
The symbol {, ,/ { indicates that {, < &, < ... and V §, = {. The
n=1
symbol {, N\, ¢ indicates that & > & > ... and /L & = L.

A partition of M into distinct points is denoted by €., The trivial
partition, having the single element ¥, is denoted by V.

if B,,B,, ... is a basis for the partition & and Bn is the partition
of M into the sets B, and M - B,,, then the partitions &, = B.Bs ... B,
form an increasing sequence and \/{, = {. Thus, for any measurable
partition £ there exists a sequence of finite partitions t; such that
{, /' t. Measurable partitions & and m are said to be independent if
(A N B) = uA.UB for any measurable &-set A and any measurable 7-set B,

The set B is called independent of the measurable partition & if the
above equation holds for any measurable &-set A.

A function f, defined on M, is said to be independent of & if all its
Lebesgue sets are independent of &.

1.4. From the collection of all measurable sets we obtain classes of
sets, the elements of each class being equal mod 0, and we denote the set
of classes by J)t. The operations of countable union, countable intersection
and subtraction of sets goes over to the same operations on classes, making
I an algebra. Any part of IR that is closed with respect to these
operations is said to be a subalgebra of .

It is clear that the intersection Q M. of any system of subalgebras

M, of M is a subalgebra of M. The sum \/ M, of subalgebras M, is
o

defined to be the intersection of all subalgebras that (each) contain all
the M. If My M= .. , and \/ M, =N, then we write I, ~IM".
If M=oMe> ..., and | M, = M, then we write M, (I,

Among the subalgebras of 9t there is a largest — I itself, and a
smallest — the trivial algebra It consisting of the class of sets of
measure 0 and the class of sets of measure 1.

For any measurable partition & we denote by IR (E) the subalgebra of IN
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consisting of classes of measurable E-sets. If IN(E)=IN (¥), then & = &',
and for any subalgebra of IR there exists a measurable partition & such
that ¢ (E) is the subalgebra. Thus, the subalgebras of IR are in one-to-

one correspondence with the classes of (mod 0)-equal measurable partitions.
Here M (§) — M (&) if and only if £ &,

EJJ?(y 8a) = VM (Ea), Sj?(é\ Ea) == (1 M (&a).

In particular, MM (&) /7 M (E) is equivalent to & 7§ and M (&) \ M (§)
to & N E We note that M (¢) - M, M (v) =N.

The distance P(A,B) between measurable sets A and B is defined by the
formula p(A,B) = WA UB) - (AN B)). The function p makes IM a complete
separable metric space. The operations of union, intersection and sub-
traction are continuous with respect to this metric.

1.5. The factor-space of M with respect to { is the measure space
whose points are the elements of { and the measure By defined as follows:
let p be the map taking each point x € M to the element of Z in which it is
contained; a set Z is considered to be measurable if p~!(Z) is measurable
in M, and we define Wy(Z) = W(p~*(Z)). We denote this factor-space by M/Z.
It is clear that p is a homomorphism of M onto M/L. This natural homomor-
phism is said to be a projection. The factor-space of a Lebesgue space with
respect to a measurable partition is a Lebesgue space.

1.6. As usual, we denote by L,(M) the unitary space of square
integrable functions on M; by (f,g) the scalar product of f, g € L,(M);
by [|f” the norm of f.

For any measurable partition C we denote by L,(M, &) the subspace of
Lo(M) consisting of the functions that are constant on the elements of .
L,(M, &) contains the characteristic functions of the sets of IR ({) and
is generated by these functioms. It follows that L,(M, &) = LM, C') if
and only if £ = &'. It is also clear that Lo(M, &) C Lo(M, &'y if and only
if £< €', and that {, 7 { is equivalent to

Lo (M, 5y) /Ly (M, 0, (1)
and {, \, < is equivalent to
Lo (M, So) N\ Lo (M, Q). (2)
Formula (1) means, of course, that
Lo(M, 2y Ly (M, G) ooy ] Lo (M, 8) == Loy (M, 3,
and formula (2) that
Lo(M, L) D Lo (M, 5) D ..., N Lo (M, Tn) =Ly (M, ©).

It is also clear that Lo(M, €) = L (M), Lo(M, v} = C(M), where C(M) is the
one-dimensional subspace of constants.

For any measurable partition &, Lo(M, &) is canonically isomorphic to
Lo(M/Z): the function f € Lo(M/&) corresponding to the function g € Lo (M,%)
defined by g(x) = f(px), x € M, where p is the projection.
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1.7. A canonical system of measures or a system of conditional
measures, belonging to a partition &, is a system of measures {HC}, Cel,
satisfying the two conditions:

a) M, is a Lebesgue measure on C, Cel;

b) for any measurable set X C M, the set X N C is measurable in C for
almost all points C € M/ . The function UC(X'r]CD is measurable on M/& for

W(X)= \ pe(X N C)dug
ML

Every measurable partition has a canonical system of measures, and any
two systems {Kg} and {uid belonging to the same partition [ are identical
mod O (that is, UC = Ho for almost all C € M/0).

If W(C) > 0, then H; coincides with the measure in C defined in 1.2,

1f £ is a measurable partition and C is a subspace of M, then we de-
note by . the partition of C induced by L. Generally, {, denotes the
partition induced by & in the element C of another measurable partition &
(regarded as a Lebesgue space with measure uc).CC is measurable.

Let £ and £ be measurable partitions such that & > & and let 4 be an
element of & and C an element of & containing A. As an element of the
partition & of M, A is a Lebesgue space with measure H4. On the other hand,
as an element of the partition £C of C with measure e A is a Lebesgue
space with measure (uC)A' The uniqueness of canonical systems of measures
implies that (“C)A = ux for almost all A € M/L. This property is called
the transitivity of a canonical system of measures.

Measurable partitions & and 7 are said to be independent relative to
if, for almost all C € M/, the partitions EC and T, are independent.

1.8. Prom the definition of a canonical system of measures it follows
that if a (complex) function f is integrable on M, then for almost all
C € M/C the section f, defined by the formula

fo(x) = f(x) if x € C,

is integrable on C and

| F@) du= s | fo @ dpe.

A M/t C

If f € Lo(M), then the inner integral is in L,(M/&) (Schwarz’s in-
equality), and the function

o
@)=\ fow ¥ dipe),
p(x)

corresponding to it in the canonical isomorphism between L,(M/&) and
Lo(M, £) can be considered as the result of averaging f on the elements of
€. The operator Er:Ly(M) » Lo(M, &) defined by Eff(x) = g(x) is called
the averaging operator on (.

We show that Ey is an orthogonal projection operator onto Lo(M, &).

Since for any function f € L, (M)

f=Ef+(T—Ef), EfcLy(M,7),
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it is sufficient to prove that, for any f € L,(M), the function f - E¢f

is orthogonal to Lo(M, &), that is, (f-Erf,g) = 0 if f € LMy, geL,(M, 8.
Let f, and g, be the functions in Lo(M/¥) related to E¢f and g by the
canonical isomorphism between L, (M, &) and L,(M/&). We have

(h o=\ di {1 @e@dre= | (@ aug /() dpe=

M/E o M/E ¢
=\ £(O 11O due= | g @ Eef (@) dp = (Eef, ).
M/ M
1.9. Let &,,%,, ... be a sequence of measurable partitions of M.

According to 1.6 if {, /¢, then L,(M,%,) /L, (M, and if &\,
then L, (M, §n) \ Ly (M, ). Comparing this with 1.8, we see that in both
cases E;nf » E¢f in Lo(M) for any function f € Lo(M).

We denote by p, and p the projection operators from M onto M/, and
M/E. 1f f is the characteristic function of a set X CM, then

By (@) =pp 0 (X (1 Pr (@) Etf (2) = P (X (1 P (2)).

d
Consequently, if Cn /7 or &, &, then, for any set X C M there is a
sequence of functions W, (,)(X N pa(2x)) tending to Ky )(X N p(x)) in
Loy,
1.10. For any measurable partition m with discrete conditional
measures Hp (that is, with finite or countable mod 0 elements B) there

exists a finite or countable measurable partition € such that n& = €
Moreover, € can be chosen such that for an indexing C,,C,, ... of its
elements the conditional measures of the single point intersections C; ne
of the elements with each element B of 1 form a decreasing sequence:

B (Ci N B)>ps(C2 N B)> ...

§2. Isometric operators

2.1. Let H be a separable unitary space. An isometric operator in H
is an isomorphic transformation of H onto a subspace. An isometric operator
U acting in H is said to be unitary if UH = H and semi-unitary if UH is a
proper subspace of H. The dimension of the complement in HOUH is
called the defect of U. A subspace G of H is said to be invarient under U
if UG C G, and completely invariant if UG = G. The operator U|G induced
in an invariant subspace G by an isometric operator U is also isometric.
It is called a part of U and is unitary if and only if G is completely in-
variant. If H is the orthogonal sum of invariant subspaces H;, then we say
that U is the orthogonal sum of the U; = UlHi, and we write: U = @ U,.

Operators U and U’ defined in unitary spaces H and H' are said to be
isomorphic if there exists an isomorphic transformation V from H to H'
such that U’ = VUV-2,

2.2. In what follows we need Lebesgue-Stieltjes measures on the unit
circle C= {z: |z| = 1} in the complex z-plane. By definition, two such
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measures belong to the same spectral type if they are absolutely continuous
with respect to each other. The relation of absolute continuity transferred
from the measures to their types is called subordination and is denoted by
the symbol . If p< O (that is, p< O and p # O), then we say that the
type p is strictly subordinate to the type 0. This relationship of sub-
ordination defines a (partial) order in the set of types. Any finite or
countable set of types has an upper and a lower bound, namely the sum and
the intersection. In the set of all spectral types there is a smallest type
0, the type of the measure p = 0. The type of the usual Lebesgue measure is
said to be Lebesgue and is denoted by A,

1f U is a unitary operator acting in H, then for any vector f € H there
exists a unique Lebesgue — Stieltjes measure pf on C such that

o, f):Sz"dpf (=0, =1, ...).
C
The spectral type of this measure is denoted by pf.

2.3. For every vector f of a space H in which a unitary operator U acts
there is a minimal completely invariant subspace H(f) containing f, which
we call the cyclic subspace generated by the vector f. If H(f) = H, then f
is said to be a generator of the operator U. An operator having a generator
is said to be cyclic.

If f and g are generators of U, then Pf = Pg in other words, all
generators of a cyclic operator U give the same spectral type. This is said
to be the spectral type of the cyclic operator and is denoted by p(U). It
is maximal: spectral types corresponding to other (non-generating) vectors
are strictly subordinate to p(0).

2.4, Every unitary operator can be expanded as the orthogonal sum of

cyclic parts U,,U,, ... satisfying the condition

eU)=>pUs)> ... 3)
It is convenient to assume that the sequences U;,U,, ... and p(Uy), pU,),..
are infinite: if they are finite, we add zeros. From the theory of unitary
operators we know that a sequence p(U;), o(U,), ... satisfying (3) does not
depend on the choice of the expansion U = P U;. We put p; (U) = p(U;) and
call py(U), e (1), ... the spectral sequence of U. It follows from what we

have said that operators U and V are isomorphic if and only if

o) = (V) (n=1,2, ...).

2.5. A unitary operator U has, by definition, a simple spectrum if

P2 = 0 and a multiple spectrum if p, # 0. Clearly, an operator has a simple
spectrum if and only if it is cyclic.

The multiplicity of a non-zero spectral type p is the number of elements
of the spectral sequence that are subordinate to p. We denote by p(U) the
intersection of all non-zero elements of the spectral sequence. If
P (U) #0, the multiplicity of Py is said to be the multiplicity of the
spectrum of U (if P (U) = 0 the multiplicity of the spectrum is not defined).
The spectrum is said to be homogeneous if all the non-zero elements of the
spectral sequence are equal to each other, If all the elements are subordi-
nate to A, the spectrum is said to be absolutely continuous. If all the
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terms of a spectral sequence are singular (that is, the corresponding
measures are singular with respect to K), the spectrum is said to be
singular. If all the terms are discrete (that is, are types of discrete
measures), the spectrum is said to be discrete (this is equivalent to the
requirement that the orthogonal sum of the eigenspaces is H). If all the
elements are continuous (that is, are types of continuous measures), the
spectrum is said to be continuous. Continuity of the spectrum is equivalent
to U not having any eigenvalues.

As an example of a homogeneous continuous spectrum we can take the
Lebesgue spectrum. We say that a unitary operator U has a Lebesgue spectrum
if all the non-zero elements of its spectral sequence are equal to A . An
equivalent definition: the space H is the orthogonal sum of completely in-
variant subspaces and in each of them there is a complete orthogonal system

{fn, n=10, + 1, ...}, such that Uf, = fp, 4.
2.6. As an example of a semi-unitary operator we can take the operator
defined by the formula Uf, = f, ,,, where fo,f,, ... is a complete ortho-

gonal system in H. This is an elementary semi-unitary operator. An ortho-
gonal sum of p elementary semi-unitary operators (p being an integer or o)
is said to be a semi-unitary operator with a homogeneous spectrum of multi-
plicity p. Clearly, the defect of such an operator is p.

Turning to an arbitrary semi-unitary operator we consider the inter-

oc
section H° = N UrH. From the obvious inclusions H > UH > U2H > . . .
n=o0
it follows that this intersection is completely invariant and that U|HO
is a unitary operator. The orthogonal complement /{!==/{ (" [/o is also in-
variant under U and, clearly,

N U*H -0, %)

n=>0

where 0 is the zero subspace. On H' the operator U has a homogenous
spectrum.

For let thal be a complete orthogonal system in H' (5 UH* and let H,
be the closed linear hull of the sequence h,, Uhg, U2h,, ... Clearly, the
vectors UMh, are pairwise orthogonal. Consequently, the subspaces H, are
pairwise orthogonal and in each of them U is an elementary semi-unitary
operator. By (4) the system {U"hg} is complete in ', Thus, the orthogonal
sum of the Hy is the whole of H.

We note that H' © UH* = H & UH, so that the number of subspaces Hg
is equal to the defect of U.

So we have shown that for any semi-unitary operator U the space f is
the orthogonal sum of invariant subspaces H and H*, in the first of which
U is unitary while in the second U has a homogenous spectrum whose multi-
plicity is equal to the defect of U.

The operators induced by U in H® and H! are said to be the unitary part
and the homogenous part of U.

It follows from what we have said that two semi-unitary operators are
isomorphic if and only if their defects are equal and their unitary parts
are isomorphic.
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§3. Measure-preserving transformations

3.1. Every endomorphism T of a space M has an adjoint operator Ur
acting in the unitary space L, (M) and defined by the formula

Urf@)=f(Tz), [fe€L(M), z€M.

Ur is an isometric operator. If T is an automorphism, Ur is unitary; other-
wise it is semi-unitary. If Ur and UTi are operators adjoint to endomorphisms
T and T, and are isomorphic, then T and Ty are said to be spectrally iso-
morphic. Properties of an endomorphism that are common to all endomorphisms
spectrally isomorphic to it, are called spectral. Clearly, an isomorphism
of two endomorphisms implies their spectral isomorphism. The converse is
not true; see 16.1.

The spectral characteristics of Ur are often attributed to T itself.

In particular, we talk of the eigenvalues of an endomorphism, of their
multiplicities and of automorphisms with a discrete spectrum. Some clari-
fication of the terminology used in connection with the continuous part of
the spectrum is needed. Since 1 is an eigenvalue of every Ur (the constants
are invariant functions), the spectrum of such an operator can never be
continuous. We say that an automorphism T has a continuous spectrum if the
operator Ur has a continuous spectrum in the orthogonal complement

L, (M) & C (M) of the subspace of constants. Similarly we define Lebesgue
and absolutely continuous spectra for automorphisms.

3.2. An endomorphism T is called ergodic if every measurable set A
that is invariant under T (7T %4 = 4) has either measure 1 or measure 0. An
equivalent condition: every invariant function in L,(M) is a constant,
that is, 1 is a simple eigenvalue of Ur. Thus, ergodicity is a spectral
property.

If T is not ergodic, then it can be decomposed into ergodic components
in the following sense. We say that a partition & is fixed under T if it is
measurable and its elements are invariant under 7. We denote by T, the
transformation induced by T in an element C of a fixed partition C. Tb is
an endomorphism of C (with measure UC) and is said to be the component of
T in C. It can be shown that in the set of all measurable partitions fixed
under T there is a finest mod 0 partition and that T is ergodic in the
elements of this partition.

3.3. An endomorphism T is said to be periodic at a point x € ¥ if
there exists an integer p such that TPx = x. T is said to be aperiodic if
the set of points of periodicity has measure zero. If the measure in M is
continuous, then every ergodic endomorphism is aperiodic.

If T is an aperiodic endomorphism, then for any positive & there
exists a measurable set A of measure less than & such that a finite number
of the sets T-*4 cover M.

If T is an aperiodic automorphism, then for any natural number n and
any positive 8, there exists a measurable set A C M such that the sets

A, TA, ..., T"-14A are pairwise disjoint and the complement of their union
has a measure less than 6.
3.4. We say that the endomorphism T is mixing on the sets A4y, ..., 4,

if, for any sequence of complexes of non-negative integers
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(k?, ..., k1), (K3, ..., kD), ... satisfying the condition
lim  min |k} — k| oo

n—oc 0 <7jET

the relation

r i T
limp ('Do T7hngy) = .L]O B (4;)

holds. We say that T is mixing on the bounded functions fo, ..., fr if for
every such subsequence of complexes
L T
lim ([JURf, y=]] (i 1). (5)
n—soo =0 i=0
Clearly, the endomorphism T is mixing on the sets Ag, ..., A, if and only

if it is mixing on the characteristic functions of these-sets. The usual
approximation of bounded measurable functions by linear combinations of the
characteristic functions of their Lebesgue sets shows that an endomorphism

that is mixing on Lebesgue sets of the bounded functions fo, ..., f, (that
is, on any sets Ao, ..., A4, such that A; is a Lebesgue set of f;) is
mixing on the functions fo, ..., f,.

We say that an endomorphism T is mixing of degree r if it is mixing on
any measurable sets Ag, ..., Ar or, equivalently, mixing on any bounded
measurable functions fo, ..., f,.

Mixing of degree 1 is simply called mixing. We know that it implies
ergodicity and that it is a spectral property of an endomorphism. It is
not known whether mixing of degree r > 1 is a spectral property.

3.5. A measurable partition{of M is said to be invariant under the
endomorphism T if T-C < &, and completely invariant if T-'&= . In the
set of all invariant measurable partitions finer than a given partition &

there is a coarsest & = &} defined by the formula & = \/ 77"E, and the
R=0

equation & = £ is a necessary and sufficient condition for the invariance
of £, Similarly, if T is an automorphism, the partition
ET: \/Thg

—00
is the coarsest completely invariant measurable partition finer than &, and
the equation &r = & is a necessary and sufficient condition for the com-
plete invariance of &.

A®measurable partition & is said to be a generator of an endomorphism
Tif f} = €. A measurable partition is said to be a two-sided generator of
an automorphism T if & = €. £ is said to be exhaustive under an auto-

morphism T if it is invariant and \/ 7T"{=c¢.
0

If £ is invariant under an endomorphism T, then T induces a factor-
endomorphism Ty in the factor-space M/{. This is an automorphism if and
only if € is completely invariant. Ergodicity of T implies ergodicity of Tg,
1f T is mixing of degree r, then Ty is also mixing of degree r.
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The partial order in the set of measurable partitions induces a partial
order in the set of factor-endomorphisms of an endomorphism 7. In particu-

T &

lar, if L, /g, we write 7y /T

In the set of all partitions that are completely invariant under an
endomorphism T there is a finest & = ®&(T) defined by the formula

The corresponding factor-automorphism T, is the largest factor-auto-
morphism of 7.

An endomorphism Ty: M; > M, is said to be a homomorphic image of an
endomorphism T: M > M if there exists a homomorphism S: M - M, such that
ST=T,8. S is called the connection.

Every factor-endomorphism of an endomorphism T is a homomorphic image
of T; the connection is the projection M » M/&. Conversely, every homo-
morphic image of T is isomorphic to one of its factor-endomorphisms.

3.6. As examples, we consider the Bernoulli automorphisms and endo-
morphisms. Let X be a Lebesgue space and M a direct product, infinite in
both directions, of a sequence of copies of X. A point of M is a sequence
{xn}, xn € X (n=0, £ 1,...). A Bernoulii automorphism with the set of
states X is the automorphism T defined by Tix,} = lyn}, yn = %ny 1. If the
sequence {xn} is infinite in one direction only (n= 0,1,2,...), we obtain
a Bernoulli endomorphism.

We denote by & the partition of M defined by the condition: points {x,}
and {y,} belong to the same element of the partition if xo = ¥o. Clearly,
£ is a generator in the one-sided case and a two-sided generator in the
two-sided case. In both cases the factor space M/& is isomorphic to the
space of states X,

3.7. An automorphism T' is said to be a natural extension of an endo-
morphism T if T' has an exhaustive partition & such that the factor-endo-
morphism 7% is isomorphic to T. For example, a Bernoulli automorphism is a
natural extension of a Bernoulli endomorphism with the same set of states:
for & we can take the partition &, where & is the two-sided generator of
3.6.

In [25] it is proved that every endomorphism T has (to within iso-
morphism) a unique natural extension and that it is ergodic if and only if
T is, and is mixing of the same degree as 7. The spectrum of the natural
extension is determined similarly. By virtue of all this we need only prove
the existence of the natural extension. Here is the proof.

For a given endomorphism T of a space M we denote by M’ the set of
sequences

(xO? zy, .. ')y xkE Mv (6>

such that Txp .1 =x;. For a set XCM we denote by X), the set of sequences
(6) with x, € X and we denote by K, the collection of X, for all possible
measurable sets X C M. Clearly, Ko CKy C ... and K= UK, is a field of
sets. We define a function u'onK by the formula i’ (X;) = u(X) and choose a basis T
inM such that T-*G €I for any GeI'. We may assume that M is complete with
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respect to I. We denote by '’ the system of all sets G, € K corresponding
to G e I, Clearly, I'' is a basis in M' and the completeness of M with re-
spect to I implies that of M’ with respect to I''. The function ¢’ is non-
negative, finitely-additive and normalized; the completeness of M' with re-
spect to I'’ implies that it is also countably-additive on K. Therefore it
can be extended to a Lebesgue measure making M’ into a Lebesgue space,

and the transformation T' defined by

T (xg, 24y ... ) =Tz, g, T4, - . .04

is clearly an automorphism of M‘.

We denote by & the partition of M’ defined by the condition: sequences
(x0,%1, -..) and (x0,%1, ...) belong to the same element of & if xo = xo.
The factor-space M’/ is canonically isomorphic to M and clearly this iso-
morphism takes 72 to T. It is obvious also that & is exhaustive under 7’.

3.8. If T is an endomorphism of M and T’ is an endomorphism of M’,
then the direct product T x T' defined by

T %7 (x,2")= Tz, T'z),

is an endomorphism of the space M x M'. 1f T and T’ are automorphisms, then
Tx T' is also an automorphism. If T and T’ are mixing of degree r, then
Tx T' is also mixing of degree r,

§4. Entropy of a measurable partition

4.l. Let £ be a measurable partition of a space M and let C,,C,,
be elements of & of positive measure. We put

[ —SuColen(@) it pM—YC)=0,
Wt*f"o if M(M—Eck)>0

H (E) Q)

(logarithms are to the base 2). The sum in the first part of (7) can be
finite or infinite. H(&) is called the entropy of £.

The entropy H(€) of the partition of M into distinct points is some-
times called the entropy of M.

We put, as usual 1lg 0 = — 0, 0 lg 0 = 0 and we denote by m(x; &) the
measure of the element of & that contains the point x € M. Obviously, (7)
can be written in the form

H (@ =—\lgm(z§dp. (8)

M

.

PROPERTIES OF ENTROPY

4.2. HE) > 0; HE) = 0 if and only if &= V.

Obvious.

4.3. IfEgm, then HE) < Hmy. If £< n and HE) = HM) < @, then
E=m
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PROOF. If E < n, then m(x; &) > m(x; N) and, by (8), H(&) < H(n). If
also

m (z; §)>m(‘r; m)s H(E):H(n)<°°a

then (8) implies that m(x; &) = m(x; M) and from this and the inequality
£ < m it follows that &= 1.

b If &, L then H (%) 7 H (B).

PROOF. 1f &, /g then m(x; &,) \ m(z; &) almost everywhere and so, by
(8) and the theorem on the integration of monotonic sequences,

H (&) 7 H ().

4.5. If & N\\E and H (&)< o, then H () H (?).

PROOF. If E, (L, then m(z;t,) /m(r; &) almost everywhere, and by (8)
and the theorem on the integration of monotonic sequences, # (&) \ H (§).

4.6. The entropy of a measurable partition is the least upper bound
of the entropies of finite measurable coarser partitions.

PROOF. 1f & is a measurable partition and &,,&,,... is an increasing
sequence of finite measurable partitions tending to &, then H (§,) / H (§).
(see 1.3.)

4.7. The entropy of a measurable partition into n sets is less than
or equal to lg n. The entropy is equal to lg n if and only if every
element of the partition has measure 1/n.

PROOF. Let pi4,...,p, be the measures of the elements of a partition &.
Since the function

pxy=zlgzx (9)
is strictly convex on the half-line x > 0, for any x;, ..., x, and any-
non-negative numbers «®,, ..., &, such that

2 A = 1-a
the inequality
¢ (2 azi) < 2 o (1) (10y

holds; with equality if and only if all the x; are equal. Putting
Putting ¢; = 1/n, x; = p; (i =1, ..., n), we get

n
—2 plgp<ign,

with equality if and only if ps = ... = p, = 1/n.
4.8. For any measurable partitions & and 1,
H (En) <H (§)+H (n). (11)
If H(E) < wand H(N) < @, then equality holds if and only if E and N are
independent.

PROOF, 1f H(E) = w or HIN) = ©, the inequality is trivial. Let
H(E) < wand H(N) < ©, and let p;, g; and r;; be the measures of the
elements of & 7, and £n so that

N o
LiTij= Py, Z"u':qj.

T
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We define ® by (9), fix j and rewrite (10) with &; = p; and x; = r;;/p;.
Clearly Za;x; = q; and (10) gives
i
Tij Tij Y 4
gilgg; < D) Pi—p—j—lg;—: Mriflgri;— D rilg pi.
i i i

Summing over j we get (11). Equality occurs if and only if, for each fixed

J,» xi does not depend on i, Summation of the equations r;; = x;p; over i shows
.

that the last condition is equivalent to the system of equations q; = —il,
pi

that is, & and N are independent.

4.9. For any finite or infinite sequence of measurable partitions

El,gg, [N
H(\/ &) << 2 H (&)

When the sequence is finite, this follows from 4.8; when the sequence
is infinite, it follows from 4.8 and 4.4

§5. Mean conditional entropy

5.}1. If & and n are measurable partitions of a space M, then almost
every partition &g, B € M/n, (see |.7) has a well-defined entropy H(&p).
This is a non-negative measurable function on the factor space M/n, called
the conditional entropy of & with respect to n. Its integral in M/m,
finite or infinite, is called the mean conditional entropy of £ with re-
spect to T and is denoted by H(E/n):

H(Em)= | H () dp. (12)
M/m
AN EQUIVALENT DEFINITION. Let B(x) be the element of T con-
taining the point x € M. We denote by m(x; &/7) the measure (in B(x)) of

the element of the partition 53(:) containing x (see the definition of
m(x; &) in 4.1.). Then

H Em)= — | lgm (z; E) dp. (13)

M

This formula has the advantage that the domain of integration does not
depend on nN.
PROOF of (13). By (8)

H(Es) = — | lgm (z; &) dps

B

(B being an element of M), and therefore

HEm={ HE)dn=— § any { 1gm (5 &) dps.
M/ M/m B
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It remains to note that lg m(x; (p) is the restriction to B of lg m(x; &/7)
(see 1.8).

PROPERTIES OF THE MEAN CONDITIONAL ENTROPY
5.2. H(E/v) = H(E).

Obvious.

5.3. If &< n, then HEL/M) = H(E/M).

PROOF. If B is an element of T, then (E0)p = &p.

5.4. H(E/m) > 0; HE/M) = 0 if and only if E< .

Follows from 4.2. For, £ < 7N is equivalent to the collection of equa-
tions &g = vg (B € M/n).

5.5. IfE< &', then HE/M) < HE'/M). If E< &' and
HE/M) = HE'/M) < ©, then &n = &'n.

Follows from 4.3. For £n = E'n is equivalent to the collection of
equations &g = ER(B € M/n).

5.6. For any measurable partitions & m, and £

H (En/8) < H (§/0) + H (n/L).

If HCE/C) < w and HN/E) < ®, then equality holds if and only if & and m
are independent with respect to L (see 1.7.).
For according to 4.8,

H (Eeme) < H (§¢) + H (ne), cCeM/g, (14)

and to get the required inequality it is sufficient to integrate (14) over
M/&, The second part of the theorem is a consequence to the second part of

Theorem 4. 8.
5.7. If & /&, then for any measurable partition M

H (E/m) /' H (E/m).
For by 4.4,

H(()s) /" H(Es), BeMn,

and we need only integrate this over M/n.
5.8. If &, & then for any measurable partition M such that

H(E1/1) € o,
H (Eu/m) \ H (E/).

For by 4.5,
H ((&)s) \\ H (Ep), B€ M,

and we need only integrate this over M/m.
5.9. For any measurable partitions E, nand C,

H (En/8) = H (E/%) + H (n/EY).
PROOF, If £ = v, the formula becomes
H (En) = H (§) + H (n/¢). (15)

We consider this case first.
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If the union of the sets of measure 0 in either & or 1 is a set of
positive measure, then (15) is obvious (both sides are equal to w). We
assume that & and N are finite or countable and let 4;,4.,... and B;,B,,...
be the elements of these partitions. We put p; = W(A4;), qj = W(By),
rij = W(A; N Bj). From the conditions ?Iﬁj =pi §rgj =g; it follows that

“%rwlgm:—;pilgpr;pi;%" g%,

and this is (15).
Now we take the general case. From what we have proved, we know that

H (Ecne) = H (Ec) + H (nc/&c), CcMJE,
and so

{17 Eene) dug= { (o) dpe+ { H (efte) dpe.
M Mg M/ '

The left-hand side is equal to H(En/&); the first term on the right is
H(E/Z), and it remains to show that

{ H (e/te) dug = H (/D). (16)
M/

But this follows from (13) according to which

H (/) = — S lgm (z; ne/Ec) dpe,
&

H (/&) = — { lgm (= n/ED) du,
M
and from the transitivity of the canonical system of measures (see 1.7), by
which lg m(x; n¢/Ec) is the restriction to C of the function
lg m(x; n/EC) (see 1.8).
5.10. For any measurable partitions & n, and C,

H (EMm0) < H (§/7). A7)

If HE/E) < o, equality holds if and only if & and N are independent rela-
tive to &.
In particular, for any two measurable partitions & and 1

H (Em) < H (8),

and if H(&) < o, equality holds if and only if & and N are independent.
The proof will be given in 5.12.
5.11. If w, /v and & is a measurable partition such that

H(E/M,) < @, then

H (8/ma) N\ H (E/m).
PROOF OF 5.10 AND 5.11. First we show that if %, /1 and & is a

finite measurable partition, H(&/n,;) - H(E/n): next we prove 5.10, and
finally 5.11.
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Let Ay, ..., A, be the elements of & and let p, and p be the projec-
tions of M onto the factor-spaces M/n, and #/n. By 1.9
Bo, @ (AN Pn (@) = pp 0 (A NP (2)) (=1, ..., m)

in mean square, hence in measure. Since
H (Ep, @)= — ;‘ o, () (Ai () Pn () 18 p, (=) (4i ) Pn (2)),

H (Ep () = — Z Mp (@) (A: O P (7)) 1g B (i N P (2)),
we have

H (gpn ) —>H (Ep(x))

in measure and
H (& ) <m max (—tlgt).
<t

Consequently

H (&) = § H &, o) du— | H Gedp=H Em).
M M

Now we prove Theorem 5.10. If H(E/L) = o, then (17) is obvious. If
H(M/E) < o, Theorem 5.10 is an obvious consequence of Theorem 5.6 and
Theorem 5.9. We consider the case H(E/8) < w, H(MNW/E) = .

If & is a finite partition, we find an increasing sequence of finite
measurable partitions My,MN2, ... converging to N and we write

H (&/mal) < H (E/0), (18)

when we go to the limit, we obtain (17) on the basis of the special case
of 5.11 already proved. Equality holds if and only if equality holds in all
the inequalities (18), that is, if and only if & and n, are independent
with respect to & for all n, or if and only if € and n are independent with
respect to .

If £ is infinite, we find an increasing sequence of finite measurable
partitions &;,&,, ..., converging to & and write H(&,/n%) < H(E, /D).
Proceeding to the limit we obtain (17) on the basis of Theorem 5.7. If
HE/ME = HE/E) then, by Theorem 5.9,

H (En/nT) = H (§/m8) — H (§/8mE) > H (§/8) — H (§/8:5) = H (€n10)-

Therefore equality holds in (17) if and only if equality holds in all the
inequalities (18), that is, if and only if &, and T are independent with
respect to & for all n, or, if and only if & and 1 are independent with
respect to &.

We prove Theorem 5.11 in the general case. Let & be an arbitrary measur-
able partition. By what has already been proved, it is sufficient to estab-
lish that for any positive & there exists a finite measurable partition
£, < & such that for n=1,2,...,

H (E/mn) — H (Ey/nmn) << 8. (19)
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Let £, be a finite measurable partition coarser than &, satisfying (19)
for n= 1 (see 5.7). By Theorems 5.9 and 5. 10,

H (8/mn) — H (§/n,) = H (8/Em,) < H (E/8 1) = H (E/my) — H (E/my) < 8.

5.13. If Ma\yM, then H (E/nn) /" H (E/m).

For a finite partition & the proof repeats the appropriate part of the
proof of Theorem 5.11. Let & be an arbitrary measurable partition and I a
number less than H(&/n). If &, is a finite measurable partition coarser
than £ such that H(&;/n) > [ (see 5.7), then H (§,/m,) / H (§/v), and for
sufficiently large n

H (&) > H (Ei/n,) > 1.

5.14. For any measurable partition M and any finite or infinite
sequence of measurable partitions &;,&,,...,

H(VE/m) < 2 H (Ealm).
For by 4.9

H(VE)n) <2 H(Es),  BeMm,

and we need only integrate this over M/m.

§6. Spaces of partitions

6.1. We denote by Z the set of measurable partitions with finite en-
tropy and for £ and m in Z we put

p (& m)=H (E/m) 4 H (n/§).

Since

H (E/0) < H (En/§) = H (n/8) + H (§/mE) < H (/T) + H (§/m)

and, similarly,

H (I8 < H (W/8) + H (T/m),
we have

pE D<pE n)+pn, L.

It is clear also that p(&, n) = o(n, &), (&, M) > 0 and p(&, n) = 0 if
and only if £ = M. Thus, if the elements of Z are regarded as classes of
equal mod 0 measurable partitions, then @ is a metric in Z.

In this metric Z is a complete separable space.

To prove separability we take a sequence of fimite measurable parti-
tions &;,&,,... such that &, /€. The set of all partitions coarser than
any &, is countable and, by Proposition 6.3 below, it is dense in Z.

Let us prove that Z is complete, that is, let us show that any funda-
mental sequence &4,&,, ... converges in Z. It is sufficient to consider the
case p(&,, En.+p) < 27" (p > 0); for from any fundamental sequence we can
select a subsequence satisfying this condition and a fundamental sequence
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that contains a convergent subsequence is convergent. We put

E =

i

&
1

>
<<

1

and show that & € Z and p(&, &,) - 0. According to 5.9, for 1> n

o - — o
H(V 8/ 8 =1 &/ Wi T 6/ .
=] =n k=n h=[+41 k=n

Summing over [ we get

H(V @/t)= X HE/V 8< S HE o),
h=n--1 1 h=n l=n-+1

=n4-1

and since

§<h:\1{+1 Sk H(E18-) <p (&, &) < 2_“‘1),
we have

H (/&) < 2 2= _ g=(n—1)

l=n+1
On the other hand, by 5.183,

H (8] §) =1im H &,/ &),
and so, for sufficiently large I,

H (€S < H (/Y B+ 27" < H Gall) 27

If 1> n, then H(E/E]) € p(En, &) < 277 and we get

H (8) < H () + H (8/8) < H (&) +1 < oo,
o (& En) = H (E/8,) + H (E/E) <2772,

6.2. The set of finite partitions is dense in Z,
For if & € Z and &,,8,, ... is a sequence of finite partitions such
that E, 7 &, then

P (&, &) = H (E/E,) — H (§/8) —0.

6.3. Let £,,8,, ... be a sequence of measurable partitions. If
then the set of partitions & € Z such that &< &, for at least one n is
dense in Z,

It is sufficient to prove that for any finite partition N € Z and any
positive & there exists an n and a & € Z such that £ < &, and p(&, n) < 8.

Let Gy, ..., G, be the elements of N. As &, ¢, we have
ﬂR(En),/’ﬁR(E)- Consequently, for any positive &' there exists an n and
E,-sets C{, ..., Cn.1 such that p(C;, C}) < 8" (i =1,...,m-1). We denote

by & the partition of M into sets Dy, ..., D, defined by the formulae
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i—1
Dy=C,, Di=Ci— | C} (i=2, ..., m—1),
j=1

m-—1
Dn=M— ( C.
j=1

Clearly, £< &, and

o & = 3 (C)Igu €0+ u (D) lgn (D)~

—2 ,Ziﬂ(ciﬂpj) lgu (Ci N Dy)-

1, 1=

These formulae show that p(£, M) depends continuously on Cy, ..., Cp_4

(see |.4) and is zero for C;y = Ci, ..., Cr_y = C,_,. Therefore, if &' is
sufficiently small, then p(&, n) < 6.

6.4. If E, /& then the set of partitions in Z coarser than some &,
is dense in the set of all partitions in Z coarser than E.

This theorem reduced to Theorem 6.3 (of which it is a generalization)
after factoring M by &.

6.5. The function H(E) is continuous on Z; the function H(E/n) is con-
tinuous on Z x Z. Moreover, for any three partitions &, n, & in Z,

| H (8/8) — H (n/T) | <p (§ M),

| H (§lm) — H (/L) | <p(n, §).
In fact,

H(EQ) —H (W) < H (En/l)—H (n/f) = H (§/m8) < H (§/),
H (&) — H (8/0) < H (8/m) — H (E/mD) = H (L/n).

6.6. If A is an everywhere dense set in Z and &, T are measurable
partitions such that

H (a/%) = H (aln) (20)

for any 0. € A, then & = n.

PROOF. If (20) holds for any & € A, then by Theorem 6.5 it is true for
every ¢ € Z, and then by Theorem 5.7, it is true for every measurable d,
Putting ¢ = & first and then & = 7, we see that £< 1 and N &.

6.7. The set Z, of all measurable partitions also has a natural
topology. This can be described in many equivalent forms; here is one of
them.

We denote by Q the class of subsets of Z, each one of which is defined
by finitely many inequalities of the form IH(a/E) - H(a/50)| < 6, where
Eo € Z,, @ € Z, and 6 is a positive number. Clearly the sets of Q cover
Z,, and if the intersection of two sets of {} contains a partition £,, then
this intersection contains a set of  that contains &,. Consequently Q is
a basis of a topology in Z,.

This is a Hausdorff topology. For if &o # £,, then by 6.6, there exists
a partition ® € Z such that H(0/Eq) # H(a/E,); putting
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6= %|H(a/&o) - H(a/Ey)| we see that the neighbourhoods of &o and &, de-
fined by
| H (/&) — H (/&) | <<8, |H (a/E)— H (a/&)] <

do not intersect.
From Theorem 6.5 it follows that the identity transformation from Z to

Z, is continuous and, from Theorem 5.11, that Z is dense in Z;. Thus, any
set dense in Z is dense in Z, and so Z, is separable. It can be shown that
it has a metric in which it is complete.

§7. Fundamental Lemmas

7.1. Let T be an endomorphism and & a measurable partition of the
space M. We put

R(T, &)= H E/TE). (21)

If £ is an invariant partition, then & = E and the formula simplifies
to KT, & = H(E/TE). 1t is also clear that h(T, &) = H(T, &) for every
measurable partition £ so that the function A(T, &) attains all its values
on the set of invariant partitions.

The properties of A(T, &) will be studied in the next section. This
section contains subsidiary material. We use the following notation:

n n=1 ok 0
Er= \({ T, n>1l;, Er=wv.
Simpler notation: &™.
7.2. Ifng &, then
n—1
HE T = 2 H @7 (n°8). (22)
In particular,
HE" Tt )=nh(T, ¥).
PROOF. Since E* = E.T-1E%-1 we have
H (ET™) = H (T8 YT ) + H (8T M T2E1)
(see 5.9). As T is an endomorphism and N < &,
H (T2 TPy = I (BT ~* Dy,
T T = 71 (g
and so
H (gk/T-hn—) —H (Ek—l/T—(h—l)n_) ~H (E/T—l (T]_Ek"l)).

(22) is derived from this equation by an obvious induction.
7.3. Ifng & and HE/T ') < o, then

L H (ET) N\ (T, ). (23)
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PROOF. Since &" /&, we have nf" /¢ and

HETTE) \H E/IT7E)=h(T, §). (24)

(23) follows from (22), (24) and the standard theorem on arithmetic means.
7.4. IfE € Z then

%H () A (T, B). (25)

This is a special case of the preceding theorem: put N = Vv,
7.5. IfE< nand HW/T'E) < w, then

% H (E"T-"q") — h (T, &).

PROOF. Let & be a positive number. Since
1 n e Pl 1
T HEIT™ )< -H(EYT)=h(T, §) (see 7.2) and since by Theorem 7.3

1
7+ HMMTE) (T, n), it is sufficient to prove that the inequality
L H T-"w)>h (T, §—8 holds for all n for which

L) <
LH @1 =

(T, m)-~6. This is clear from the chain of relations:

S =

H (n"1T-") — o H (0"/8"T~"11) >

>h (T, )~ H ("/ET"E) >

>+ H "IT"E) — 8 —~ H (" 1678 =

=L H@Erre)—s=n(, p—s.

7.6. If & n, & are measurable partitions such that &< M and
H(MZ/T*n™) < o, then

HET™-T-"¢) / HEIT ). (26)
The proof depends on the formula

HO"T" (7)) = kgi H (/T T, (27)

which is true for all measurable partitions N and £ and can be derived by
induction from the equation

H T 175) =
= H (T~ /T4 T-7) 4 H ("7~ . T Ty
=H (n/T—1n— . T—(n+1—-h)c-) + H (nh_ilT_(k—i)T]_T_ng_).

If £=n, then (26) is a_consequence of (27) and of Theorem 7.5. For
the sequence {H(M/T-*n~.T-"¢ )} is monotonic and therefore converges, and
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by (27), the theorem on arithmetic means and Theorem 7.5, its limit is
H(n/T 7).
In the general case

H T T7) = H (T 1) — H (08T~ 1),

The first term on the right, according to what we have just proved, has
the limit H(n/T-2n"); the second term does not exceed H(W/E.T-*n").
Consequently

Yim H (8/T - T7°0) > H (/T ) — H (WE-T-') = H (E/T ),
and the opposite inequality is obvious.

7.7. If T is an automorphism and &, N are measurable partitions such

that HEN/T*E7) < @, then

(T, En)—h(T, &) =H (/T n-Er). (28)
The proof depends on the formula
H g -T") = hZO H@iT - T, (29)

which holds for any measurable partitions & and m and is derived by induc-
tion from the equation

H (015 -1 ) = H (I~ On/8 - T) 4 H (1) =
= H /T -T-1) + H (" YET~* ). (30)
(28) follows from (29) and Theorem 7.5. For

U T () — B (G (&) =
= H (W TE-T™0) =2 B (e 7). (31)

By Theorem 7.5 the left-hand side of this equation converges to the left-
hand side of (28). By (29), the theorem on arithmetic means and the fact
that

H /T T"E) \(H (/T - &p)

the right-hand side of (31) converges to the right-hand side of (28).

§8. Properties of the function h(T, &)

8.1. MT, & < H(&). In particular, if & € Z, then KT, &) < w.

This follows directly from the definition of A(T, £) and Theorem 5.10.

8.2. KT, &n) < KT, & + (T, ny. If & and 1"~ are independent, then
equality holds.

PROOF. By Theorem 5.9,

H (/T -T') = H §/TE - T') + H (n/& - T),
and by Theorem 5.10
HE/TE T ) < H (E/TE), Hn/ ET ') < H (/T ). (32)
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It remains to note that if & and N~ are independent, then equality holds
in the inequalities (32).

8.3. Ifn> 1, then (T, &) < KT, &M

For since (&™)~ = &, we have

HEYT(E"))=H (§"/T'E) > H (§/T1E).
8.4, h(T", EM = nk(T, &).
PROOF. Since (&R)rn = &, we have

R(T", &2) = H (E2/T" (§3)n) = H (E2/T1E7),

and it remains to apply Theorem 7.2.

8.5. If T is an automorphism and & € Z, then (T, &) = KT, &).

This follows from Theorem 7.4 and the obvious relation 55‘._1 = T’"lE;'..

NOTE. The condition & € Z is necessary. If, for example, the partition
£ is invariant under T, then A(T"1, &) = H(E/TE) = 0, but there exists
automorphisms for which h(T, &) is not identically equal to zero.

8.6. The function h(T, &) is continuous on Z (in &). Moreover, for any
EeZ nez

V(T ) — (T, § [<p & n). (33)
PROOF. Since

HE)+HME)=H(E") = H ")+ H E"/n"),

we have
HW)—H(E")=HMW/E)—H(E" "),
and
| H (") —H (") |<<HW"/E")+ H (E"/"). (34)
But
— ~1
H(E" ) < }_ H (I ey < 'S H (T4 T~*n) = nll (Em) (35)
=0 E=0
and similarly,
H (m"/E") <nH (n/3). (36)

From (34)-(36) it follows that |H(M™) - HEMY| < npE, my. Dividing by n
and taking the limit as n » w, we obtain (33).
8.7. If &< nand HW/T-*E) < w, then

(T, &Y <<h(T, n).

In particular, (T &) is monotonic on Z.
PROOF. Since £ < M, we have

1 npmpen, 1 npgen -

But by Theorem 7.2 the right-hand side is equal to hA(T, n) and by
Theorem 7.5 the limit of the left-hand side (as n » ®) is (7T, &).

NOTE. On the set of all measurable partitions the function h(T, &) is
not monotonic, in general, For example. if T is an automorphism, then
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clearly h(T, €) = 0, but as has already been said, there exists an auto-
morphism for which h(T, &) is not identically zero.
8.8. IfE< N andne€Z then

h(T, & <h(T, n). (37)

PROOF, Since mn™ /v, the set of partitions coarser then the parti-
tions N™ is dense in the set of measurable partitions coarser than N~
(see Theorem 6.4). Therefore it is sufficient to prove (37) for the case
£< n® for some m. But in this case &P g (MM = nm+n-1 gpd

. 1 n . 1 MR-
(T, E)::hm-n—H(E )< lim — H (™" 1) =k (T, m).

8.9. If T is an automorphism and E< 0y, N € Z, then KT, &) < KT, m).

The proof is similar to the preceding one. Since n".7"ly* 7y, it
is sufficient to consider the case & < T". T®-in® for some m. In this case
g'n\< (anm-inm)n - Tm-1n2m +n-2 and

BT, &) =lim— H (") <lim - H (") — (T, 7).

8.10. If& e€Z and n is a partition fixed with respect to an endo-

morphism T, then
h(T, &) =h(T, §).

PROOF, First we assume that " € Z and write down (31) again. Since a
fixed partition is completely invariant, the right-hand side of this equa-
tion is zero; the left-hand side by Theorem 7.5 converges to
(T, én) — KT, &). Consequently, h(T, &n) = R(T, &).

If n is an arbitrary fixed partition, then there exists a sequence
N4,MNo, ... in Z such that 1), /ZTL and, as any partition coarser than a
fixed partition is fixed, A(T, &/n,) = h(T, &) . Since N and N, are com-
pletely invariant,

h (T’ Enn) =H (E/TInT—lE—), h (Tv ET]) =H (E/T]T"lg“),

and by applying Theorem 5.11 we see that A(T, &n,) - A(T, £n). Consequently,
h(T, &n) = KT, &).

8.1l. If& eZ andn is a partition fixed under T, then
(T B = (T Ea)dps, (38)
M/n
where Tp is the component of the endomorphism T in the element B of M.
PROOF. Since
B (T, &)= H (E5/THED) = — | lgm (a3 E5/T5ED) dus
B

(see 5.1) and since the function under the integral sign is the restriction
to B of lg m(x; &/ne T ™), we have
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{ 25 ) din=— { dia {dgm (25 GIT585) dpn =
M/n M/m B

= —{ lgm (& EMTE) du—H EMTE),  (39)
ar
The right-hand side is equal to A(T, &n) = (T, &) (see 8.10).

§9. Entropy of an endomorphism

For an arbitrary endomorphism T of M we put
h(T)==suph (T, &), (40y

where the upper bound is taken over all measurable partitions or (what by
7.1, gives the same result) over all invariant partitions. h(T) is called
the entropy of the endomorphism T. It is a non-negative number or + w.

The right-hand side of (40) does not change if the upper bound is
taken only over Z or even only over the set of finite measurable partitions.

PROOF. It is sufficient to show that for any measurable & and any
positive number ! < h(T, £) there exists a finite measurable partition N
such that h(T, n) > L.

Let &,,6,, ... be a sequence of finite measurable partitions such that
E. 7 E. since &,< &, we have

h (Tv %n) =H (En/T‘—lg;) > H (En/T_lg_)'

The right-hand side of this inequality converges to H(E/T*E™Yy = (T, &).
Consequently h(T, &,) > | for sufficiently large n and we can put N = &,.

9.2. If S is a factor-endomorphism of an endomorphism T, then
h(S) < h(D).

PROOF. For h(T) is the least upper bound of the function (T, &) on the
set of all measurable partitions and A(S) is the least upper bound of the
same function on the set of measurable partitions coarser than & for which
S = TC.

9.3. For any endomorphism T and any n > 0, h(T") = nh(D. If T is an
automorphism, then h(T"*) = h(D).

PROOF. By 8.3 and 9.1, (T, &) < h(T?, EM < h(T™) for any measurable
partition & The least upper bound of the left-hand side (over &) is equal
to h(T™) and hence this is also the least upper bound of A(T", &M) over &,
But according to 8.%, h(T", E™ = nh(T, &) and so
sup h(T?, &P) = n sup h(T, &) = nh(T). The second part of the theorem, con-
cerning automorphisms, follows from Theorem 8. 5.

9.4. If & € Z is a generator for an endomorphism T or a two-sided
generator for an automorphism (see 3.5), then (T, &) = h(T).

This follows from Theorems 8.8 and 8.9.

9.5. If &1,8,, ... is a sequence of partitions in Z such that & /e,
then (T, &) /" h(T).

PROOF, Let | be an arbitrary number less than A(T). We look far a
partition & € Z such that h(T, E) > | and for an N € Z, and an n such that
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n< &, and p(E, n) < (T, & - 1 (see 6.3). According to 8.6
WT, & - KT, n) < p(& n), and hence W(T. £,) > h(T, n) > 1. Thus, if
I < h(T), there exists an n such that h(T, &,) > l.Since WT, &) < h(T)
and the sequence h(T, &1), h(T, &5), ... is increasing, we see that
(T, &) 7 k(D).

9.6. If Ty /T (see 3.6), then (Te,) /1 (T).

PROOF. If g, /¢  then there exist M, € Z such that N, < &, and
M. /€. The relation % (T:),/ h(T) follows from the inequalities
(T, Ny < h(Tg) < h(T) and Theorem 9.5.

8.7. For any two endomorphisms S and T,

h(S X T)=h(S)-h(T) (41)

(see 3.8).

PROOF. Let X and Y be the spaces in which S and T act, and let
Vy, Vy, €x, €y be the trivial and the point partitions of these spaces.
Also, let &,,8,, ... be a sequence of partitions in X such that &, /ey
and N;,No, ... a sequence of partitions in Y such that n, /ey. It is
clear that the partitions &, x Vy and Vy x N, are independent and that
(En X vy) (Vx X Ma) =& X Mn / €x X &y. Therefore

R(SXT, & X M) =h(SXT, & X vy)4-h (S X T, vy X M) =1 (S, &)+ (T, 1)

(see 8.2). (41) follows from this equation and Theorem 9.5.
9.8. If a partition N is fixed under an endomorphism T, then

n(= { k(@) du,

M/n

vhere Tp is the component of T in the element B of n.

PROOF. Let £,,85, ... be a sequence in Z such &, /&. According to
Theorem 8.11,
h (Ty gn) = -\ h (TBv (En)B) d”nv (42)
M/n

and according to Theorem 9.6,
R(T, &) /" h(T), b (Ts, (&)5) /" h (Tp). (43)

The required equation follows from (42), (43), and the theorem on the
integration of monotonic sequences.

9.9. The entropy of an endomorphism is equal to the entropy of its
natural extension.

This follows from Theorem 9.6: if & is exhaustive under the automorphism
T, then Trn; /T, and the factor-endomorphisms are isomorphic to Ty,

9.10. In the simplest cases the entropy of an endomorphism can be
computed directly.

If T is the identity automorphism, then every measurable partition is
completely invariant so that h(T, £) is identically zero and A(T) = 0.

If I is a periodic automorphism, then TP is the identity automorphism
for some p and since A(T) = h(TP)/p (see 9.3), h(T) = 0.
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If T is a Dernoulli automorphism or endomorphism with a space of
states X, then h(T) is equal to the entropy of X.

PROOF. Let £ be the generator defined in 3.6, As X is isomorphic to the
factor-space M/E, its entropy is equal to H(&). So we have to prove that
hD = HE).

1f H(E) < o, then by Theorem 9.4 h(T) = h(T, £), and the independence
of & and T-'& gives

BT, &)~ H(ET8) = H ().

Therefore, in this case, h(T) = H(&).

If H(é) = o, then there are partitions coarser than & having
arbitrarily large finite entropy and, clearly, for one of these, say n, the
factor-endomorphism Th- is isomorphic to a Bernoulli endomorphism with
space of states isomorphic to M/n. Consequently, if H(E) = w, then 7 has
factor-endomorphisms with arbitrarily large entropy and so AM(T) = ©
(see 9.2).

§10. The existence of generations

10.1. If an automorphism T has a two-sided generator & € Z then by
9.4 and 8.1, WD = T, &) < H(E). In particular, an automorphism having
a two-sided generator in Z, has finite entropy.

Another necessary condition for the existence of a two-sided generator
when M has continuous measure is that the automorphism must be aperiodic.
This condition is necessary for the existence of a countable two-sided
generator; for if an automorphism T is periodic on a set A and the parti-
tion £ is finite or countable, then the partition & induces in A only a
finite or countable partition.

Now we turn to endomorphisms. If an endomorphism T has a generator with
finite entropy, then by 9.4 and 8.1,

W(T)—h (T, &)< .

Furthermore, the existence of a finite or countable generator clearly im-
plies that the inverse image of points (that is, the elements of the
partition T-'e) is finite or countable, and if the measure on M is con-
tinuous, that T is aperiodic.

The main results of this section are the converses of these propositions
(see 10.7, 10.1) and 10.13), As we shall see, the greatest difficulty is
the existence of generators with finite entropy. The existence of a finite
or countable generator, for an aperiodic endomorphism with a finite or
countable inverse image of points, is easily proved (see 10.13) and does
not involve entropy theory. However, it is an important fact; it implies,
for example, that every aperiodic automorphism (to within isomorphism)
generates a stationary process with a countable number of states (discrete
time).

The theorem on the existence of a two-sided generator in Z for an
aperiodic automorphism with finite entropy (see 10.7) is of historical as
well as factual interest. The fact of the matter is that the original
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entropy characteristic of an automorphism T, which was proposed by
Kolmogorov [14] and denoted by him as h,(T), was defined as h(T, E) where
£ is a two-sided generator with finite entropy, provided that such a
generator exists, and as o otherwise. Since this did not explain for what
automorphisms such generators do or do not exist, Sinai [30] proposed to
change Kolmogorov’s invariant to the now generally used entropy A(T).
Theorem 10.7 shows that, for aperiodic automorphisms A(T) = h.(T).

There are unsolved problems connected with generators. For example,
what automorphisms have finite two-sided generators? or m-term generators?

LEMMAS ON PARTITIONS

10.2. For any two measurable partitions & and B such that & > B and
H(a/B) < w, there exists a partition Y € Z such that & = PBY. Further, Y can
be chosen so as to satisfy the inequalities

H (y) << H (2/p) -3V H (a/p).

PROOF. 1t is sufficient to consider the case ® = €, because the general
case can be reduced to this by factoring M by a. Since H(€/B) < o, the con-
ditional measures Ug, B € M/B, are discrete, and so there exist a measurable

partition Y of M and a numbering C;,C,, ... of its elements such that
BY: € and
B(CiﬂB)>P~B(czﬂB)>... (44)

(see 1.10), We denote the numbers Up(C, N B) by mp(B) and

w(Cn) = S W (Cn N B)duy by m,, respectively. (44) implies that
MB
mp(B) < 1/n. Therefore —1g m,(B) 3 lg n and
7 (elB) = 5 _‘mn (B) lg my (B) dpp >
M/B
We take any real number s > 1 and put p, = n~5/&(s), where &(s) = % n"s.

[ o}

mnlg n. (45)

~*rv/8

Since % pn=1, for &; = p; and x; = m;/p;, the inequality (10) in 4.7

holds (with ®(x) = x lg x), that is, we have

7] 3

my,

0.
DPn >

mp lg

[N

Consequently,
H(y)= “’“Emnlgmn\<\ —Z mylg pn =
1 1
= Xmallgl(s) -slgnl=1gL(s) s Smulgn <1gL(s) 4 sH (e/f)  (46)

(see (45)) and so H(Y) < o,
This proves our first assertion. To prove the second we only need (46)
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and the rough estimate lg J(s) < 2 i
s =

el

which follows from the estimate &(s)<T1-- St_<dt:: 13%(5—“1)H1)
1 1
and put s = 1 + (H(e/B)) 2.
10.3. For any two measurable partitions 0 and P such that & » B and
I(a/B) < 1, there exists a measurable partition Y such that & = BY and

Hiy) < 4/ H(@/B).

This follows from the preceding proposition if [I(a/B) < 1, then

Ha/By < VH(0/B).

10.4. For a partition « of a space M and a set B C M, we denote by
® (£ the partition of ¥ into sets A } B, where 4 is an element of &, and
the set M\\B. Clearly, d N B< af, where B is the partition with the
elements B and M\B. Thus, if @ € Z and B is measurable, then o NBelZ

If a € Z, then for any positive O there exists a positive N such that
Ha N B) < & for any set B with W(B) < A,

PROOF. Let A,,A,, ... be an enumeration of the elements of o and let
m be sufficiently large so that

. 5
D —r ) lgp (A < 8 =7 (47)
ko-m

and that W(dy) < e’! for k> m. We take A sufficiently small so that

-mt 1g t < &; and —1lg(1 — t) < §; for 0 < t < A\ and we assume that

W(B) < N\. Then the m-th partial sum of the series in

H@OB)=—p M\ B)lgu (M B)+ X [—p (4, B) Ig p(4x () B)l,

is less than 6;, and the same applies to the remainder of the sum, which is
majorized by (47), and to the number —u(MA\B)lg w(M\ B). Consequently.
Ha N B) < 6.

GENERATORS WITH FINITE ENTROPY

10.5. If T is an aperiodic automorphism with finite entropy then,
for any two partitions O, & € Z and any positive O there exists a partition
N € Z such that Ny » &7y and HW/0™) < (DY - W(T, 0) + 6.

PROOF. Let n be sufficiently large so that firstly,
H(t™y/n - (T, T) < 8, = 8/3, where T = o&, and secondly
—tlgt—(1—1t) 1lg (1 —1t) <& if 0 < t < 1/n. Let A be sufficiently
small so that H(& N B) < 8, for any set B with W(B) < A (see 10.4) and let
C be a measurable set such that the sets

C, TC, ..., T™C (48)

are pairwise disjoint and the complement D of their union has measure less
than A (see 3.3). If Y is the partition of M into the sets (48) and D, then

n

—1 n—1
k}j‘( H(TnﬂTI(C/O'nﬂTI{C) . E [}[ (TnﬂTi(C)_H(O_nﬂT)(C)]::
= h=0
S H (V) — H (™) + H (5" () D) — H (v 1 D).
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Therefore one term of the sum on the left-hand side does not exceed the
right-hand side divided by n and this term can be taken to be the term
given by k = 0, because C can be replaced by any of the sets TkC. Since

H (t"y)—H (o"y) = H (x"/o"y) < H (1"/0") = H (") — H (o"),
H ("N D)—H (v" (D) <0,

and
TH ) <A (T, 0 40, <h(T) 48, ~H (") >h(T, o),

this gives the estimate H (x"NC/o"NC)<<h (T)—h (T, 6)+06,. But
o* N C< 0%, where Yo is the partition of ¥ into the sets C and ¥\C,
and since W(C) < 1/n, we have

H(yo) = —p(C) Ign (C) — (1 —p(0) lg (1 —p (C)) << by,
Therefore
HE ' NClo7) < H((T"NC) volo™) < H (1" N Clo"yo) + H (yo) <<
< H(t"NClo"C) + 8 < h (T)—h (T. o) + 25,
We put n= (" NOYE ND). Since HE N D) < 8, we have

H (o) < H (" Cla™) -+ H (EN D)< h(T) — h (T, a) -8,

and all that remains is to verify that Ny » &7. This follows from the re-
lations

n—1 ne—
E<ty=(END) Y ENTO=END) NV T TPEN0) <
<END)V T E N <V T,
h=0 k=0

10.6. We denote by Br the set of two-sided generators in Z for an
automorphism T, and by I'r the set of partitions in Z for which
KT, & = k(D). Since the function h(T, &) is continuous on Z, the set I'y
is closed in Z and therefore is a complete metric space. By 9.4, Br C I'r.

Br is a Gs inI'7.

PROOF. We take a sequence 04,0, ... in Z such that «, e, and we
denote by Bp(p, q,r) the set of partitions & € I'r for which

Hop/ | T <.
This set is open in I't, and
Br=NNUBr(p q, r).
p g r

10.7. If an automorphism T is aperiodic and has finite entropy, then
it has a two-sided generator with finite entropy. Moreover, in this case
7 \Br is a set of the first category in I'r.

By 10.6 it is sufficient to show that if T is aperiodic and A(D < o,
then Bt is non-empty and dense in I'T.

I prove a little more: if 0< 8 < 4 and & € Z is a partition such that

W(T)— (T, & < o

then there exists a partition &' € By for which p(%, &') < 6.
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Let £5,8,, ... be a sequence in Z such that

EO = Ev En /1 €, h (T)— h (T E”‘) <

22/c+4
We construct partitions N,,N,, ... such that

ez G e H (Ml (Bpey)r) <<

22t+4

(see 10.5) and then partitions &;,%,, ... such that (Ep-)Te = (Ep-1) Tk
and (%) < 6/2% (see 10.3). Clearly, (Ep.1Ca)T= (Bp-1M)T > (ER)T.
Therefore

B3 y e Gln GV Wr=e,

and since

o0
we can put & =& \/ {,.
i

10.8. The entropy of an aperiodic automorphism is equal to the
greatest lower bound of the entropies of the two-sided generators.

This theorem requires proof only when h(T) < o, and then it is a con-
sequence of Theorems 10.7 and 10.5; in the latter we have to take & to be
a two-sided generator and O to be the trivial partition V.

10.9. If the partition £ is exhaustive under an aperiodic automorphism
T with finite entropy, then T has a two-sided generator 0. with finite en-
tropy satisfying o < &

PROOF. Let & be any two-sided generator with finite entropy, let

£4,85, ... be a sequence in Z, and ni,n,, ... an increasing sequence of
positive integers such that
-l % 1
T L 0GB <y

From the last inequality it follows that:
H (Epii/Er) < p (& Ch¢1)<i<——~f~.

92k +1

and so there exist partitions Ny, Ms, ... such that &yE, ., = &,n, and
my) < 27k (see 10.3). We put

a1 T,

Since & < T'% and Ny < Epfr 41 < TR 1%, we have a < & Since
Ha) < HED + E H(ny) < H(E1) + 1, we have & € Z. Finally, Exng > &k 44

implies that

(r o
~<fa

o o o
\4/\1/ Cry Oy == (& \1/ N = (\V Er)ry
1
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and since for any n

H (&1 &) <11 (/&) < p (& &),

~<8

13

we have

HEN 5)=0 Y E>E apsbe

10.10. Let T be an automorphism with finite entropy and , be an in-
variant partition with h(T, &) = (D). If & is a two-sided generator with
finite entropy such that ET*C = &, then & =7.

By 6.3 and 6.6 it is sufficient to prove that

H (/&) — H (n/E) (49)

for any measurable partition N satisfying N < TrE for some n. But by 8.4
H(TrE/E) = nh(T, ¥) = n(T), and by 8.% and 9.4, H(T"E /E™Y = ni(T, &) = nh(T).
Moreover, from ET-*f = & it follows (by induction) that T, = T"E", and
hence H(T"E/E) = H(TME™/L)y. This proves (49) for n= TnE™, If n< TnE,

then

HWE)=H(T"E/E) — H (T"EnE) < H (T"E7/5) — H (T"Enl) = H (n/9),

the converse inequality is obvious.

10.11. If an endomorphism T is aperioduc and h(T, €) = h(T) < «, then
T has a generator with finite entropy. More generally, if the factor-endo-
morphism Ty of an endomorphism T is aperiodic and h(T, &) = h(T{) < o, then
there exists a partition & € Z such that & =C.

PROOF. We may restrict ourselves to the case when T is an automorphism
and ¥ is an exhaustive partition. For, the endomorphism T can be replaced
by the natural extension of the factor-endomorphism T; (see 3.7).

Let @ be a two-sided generator in Z satisfying @ < & (see 10.9) and £
be a partition in Z such that BT™'¢ = & (see 10.2). We put & = af. This is
a two-sided generator with finite entropy, and clearly ET-¢ = &. By 10.10,
& =C.

COUNTABLE GENERATORS

10.12. We denote by m(&) the greatest measure of the elements of the
measurable partition &.

Let T be an aperiodic endomorphism and B a measurable partition such
that BT-*e = €. If B is finite or countable, then for finite measurable
partition 0 and any positive O there exists a finite measurable partition
Y such that BY » @ and m(Y) > 1 - 8.

PROOF. By 3.3 there existsa set A and a positive integer n such that

n—1 ) 8
UrA-M, a2

0
Since B is finite or countable, B is at most countable, and so there exists

a set B such that uB) > 1 - é

3 and in which " induces a finite partition
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S

(BYYp. Let Bi, ..., Br be the elements of the partition induced by B°, with
s € n, in the set B N 7’ s- 1)A and let a be the partition induced in B

by &. The endomorphism TS-! is a one-to-one transformation on the Bl in A
and hence carries df to a well-defined partition of some part of A. To

this partition we add, as new elements, the remaining part of A and the

set M\\A, denoting the resulting finite measurable partition of M by Y?
and we put

nors

=(V V) @n o\ B)),

Clearly, B'Y > @ and m(Y) = W(B\4) > 1 - 6.

10.13. If an endomorphism T is aperiodic and the inverse images of
points are at most countable (mod 0), then T has a finite or countable
generator. In particular, every aperiodic automorphism has a finite or
countable generator.

PROOF. Let B be a finite or countable measurable partition such that
BT-'e - € (see |.10), a,,d,, ... finite measurable partitions with product
€, and Yi,Y2, ... finite measurable partitions such that B'Y; > d, and

n(Y,) > 1 - 2" (see 10.12). We put y--\/ ys E=:Py. If C, is an element
1

of Y, with measure m(Y,), then each of the sets
Co= 0 Cu
k-=n

is the sum of finitely many elements of Y, and since

pCn)>1— 3 27" g 27",
h=n
the sets C, cover M (mod 0). Therefore Y is finite or countable, and so &
is finite or countable, Finally,

=V Fyr> Vo =e.
h=1 1

§11. Automorphisms with zero entropy

I1.1. An endomorphism has zero entropy if and only if every invariant
partition is completely invariant, that is, every factor-endomorphism is an
automorphism. In particular, every endomorphism with zero entropy is an
automorphism.

PROOF. 1f a partition { is invariant under an endomorphism T of zero
entropy, then

H (I =h(T, ) <h(T)=0

and so T"'¢ = & Conversely, if every invariant partition is completely in-
variant, then for any invariant partition &

h(T', )= H (LT =0,
and therefore h(T) =
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11.2. The following statements are equivalent for automorphisms:

A. The entropy is zero.

B. The only exhaustive partition is €.

C. Every two-sided generator is a generator.

The equivalence of B and C is obvious. The implication A » B is con-
tained in Proposition 11.1. The converse implication B > A requires addi-
tional techniques and will be established in 12.6.

11.3. An automorphism has zero entropy if and only if it has a
generator with finite entropy.

PROOF. If T is an automorphism with zero entropy, then by 10.7, T has
a two-sided generator with finite entropy, and by 11.2 it is a generator.

Conversely, if T is an automorphism with a generator & € Z, then

W(T)=h (T, &) = H (/1) = H (§/T-%e) = H (§/e) = 0.

I1.4. The generators of an automorphism with zero entropy form an
everywhere dense Gs in Z.

This follows from 0.6 and {0.7, because for an automorphism with zero
entropy I'r = Z.

11.5. Among all the factor-automorphisms with zero entropy of an
arbitrary endomorphism T there is a maximal one T;. In other words, every
endomorphism T has a completely invariant partition © = ™(T) such that
h(Ty) = 0 and if H(Ty) = 0, then E< .

PROOF, We take T to be the product of all completely invariant parti-
tions & for which h(Ty) = 0 and show that h(Ty) = 0. Let Il be the set of
partitions & € Z with A(T, &) = 0 and &,,&5, ... be a dense sequence in IL

We put M, = C/ En and M = T} £,.If & e II, then H(E/m) < H(E/E,) < p(&, Ep)
1 1

for any n, and since p(&, &,) takes arbitrarily small values, H(&/n) = O.
Thus, if £ € II, then &< n, and so N coincides with the product of all
partitions in II. But, clearly, this product is M. Consequently, N /@

and by Theorem 9.5 the equation h(T;) = 0 will be proved if we show that
A(T, N,) = 0 for n= 1,2, ... This follows from the equations A(7, &) = O
and Theorem 8. 2.

11.6. The simplest examples of automorphisms with zero entropy - the
identity automorphism and periodic automorphisms — were mentioned in 9.10.
As we shall see in I4.4, all automorphisms with discrete or singular
spectrum and all automorphisms with a spectrum of finite multiplicity have
zero entropy. There is another curious class of automorphisms with zero
entropy, which is not discussed in these lectures. This is the class of
automorphisms with quasi-discrete spectrum studied by L.M. Abramov [4].

For Lebesgue spaces with continuous measure, automorphisms with zero
entropy form an everywhere dense Gs in the space of automorphisms. For de-
tails see [23].

§12. The theory of invariant partitions

12.1. If T is an automorphism and { is an exhaustive partition, then

5Tﬂg>ﬂaj(welh&.



Lectures on the entropy theory 37

PROOF. We put /}T"§=Co. It is sufficient to prove that if ng ™)

and N € Z, then N < &o. For this it is sufficient to prove that
H (&/Eonr) = H (8/80) (50)

for every partition & € Z that is coarser than one of the partitions ™,

for since T™{ /"¢, the set of partitions coarser than the partitions T"Z,

is dense in Z (see 6.3), and hence (50) implies that Eont = &y (see 6.6).
We prove (50). For every positive integer p

H (E/%o) = H (8/Eonr) 2> H (8T Erplony) (51)
(where E7r = C’]“Wkg; see 3.4). As the partitions &, and N7 are completely

h==()
invariant, for every positive integer n we have

T1&rply = TP (ELo) Py Mp=T7"" (nf)72
and
H E/T"Erplony) = H (§/T7" (§Co) 7P - T (M7)72).

This enables us to apply Theorem 7.6, with TP in place of T, to the right-
hand side of (51). The result is:

H (E/T™"Erp-Co-mr) = H (§/T"Erp L)

Since §<T™L, we have I"VErply \ {o. Therefore H (§/TPErnl,) /" H (8/L,),
and (50) follows from (51).
12.2. If the partition £ is invariant under an endomorphism T and

o0

n== {;\ 7%, then
RAT, §)+h (1) < h (T). (52)

PROOF. Since every endomorphism has a natural extension (see 3.7) we
need only consider the case when T is an automorphism. Let &;,&,, ... be
partitions in Z such that {, ,/{ and £ a partition such that &< n.

By 7.7,
H (;n/T_l;;L' §T) +h (T’ g) =h (Tv gn&)s (53)

and since L <T =§, Er<np=n< T, we see that 7718, < 771E,
H (Cn/T7858r) > H (L,/771%). The right-hand side of the last inequality
tends to h(T, & as n » o and the right-hand side of (53) does not exceed
h(Ty). Consequently,
h(T’ C)_f—h’(Ta g)~<h (T:),
from which we obtain (52).
12.3. If the partition & is invariant under an endomorphism T and

(T, &) = KTy < o, then é\junCSQJI(T). In particular, for any partition
EeZ,

/:i T < 5 (7).



38 V.A. Rokhlin

This is a corrollary of the preceding theorem.

12.4. A partition £ is said to be extremal with respect to an auto-
morphism T if it is exhaustive and 77"f{ \ n (7). In other words, & is ex-
tremal if

TS L, ?T"g=e, ):\ T-"L —nu (T).

Theorems 12.1 and 12.3 show that if a partition & is exhaustive for an
automorphism T and h(T, &) = h(T) < , then & is extremal. In particular,
if £ is a two-sided generator with finite entropy, then & is an extremal
partition. (see 9.4.)

12.5. Every automorphism T has an extremal partition { such that
T, & = (D).

If h(T) < o, then we can put £ = &, where & is a two-sided generator
in Z. The following proof (which was found before Theorem 10.7, see [24])
works for h(T) < o as well as for h(T) =

Let &,,8,, ... be a sequence in Z such that §, /e, and nq,ng, ... a
sequence of integers. We put

p oo
’rlp= \/ _’['_nhgh7 'n: \/ T—nhgh, ;: 'YI—.
h==1 h=1

Clearly, & is an exhaustive partition. We show that if n,,n,, ... increases
sufficiently rapidly, then
H (np/T"5) — H (np/1715) — 0, (54)
and that if this condition is satisfied, then £ is extremal with
h(Tl C) = h(T)-
The relation (54) holds necessarily if we choose n,,n,, ... subject to
the following condition:
. S 1 1
H (np/T70g_y) — H (np/1 lnq)<7w for p<Zq. (55)
For then
g~p—1
1 et o
B p/T7) — H (p/T7mg) = 3% [H (p/ T ) — H (np/ T M )] <
k=0

1 g—p—1
_P— 2 2k+1 ’

and since H (np/T7nz)— H (n,/T71L) as g - o (see 5.11),
H (Mp/T75) — H (np/T78) <

The choice can be made by induction: if ns, ..., ng-1 have been chosen,
ng can be chosen sufficiently large so that the inequalities (55) are
satisfied with p= 1, ..., ¢—1. This is possible by 7.86.

Since (np)r._ ()T and &, /"¢, we have
HMp/T ) =k (T, np)=h (T, E)p —»h(I). Since np /'m, we have
H (mp/T7) — H (n/T72) = H ({/T-1L). Therefore (54) implies that
h(T, &) = h(D.
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Since £ is an exhaustive partition, by 12.1 4\7“"C2>JT(Tj, and it re-

mains to show that (54) implies the converse inequality. If h(T) < «, then
by 12.3 the converse inequality follows from the fact that WT, ) = W(T).
The following argument also works for h(T) = «w. It is sufficient to estab-

lish that any partition @ € Z satisfying the inequality o N\ 17", also
0

satisfies the inequality a < 7(T). Expanding h(T, n,0) in two ways by
formula (28) we find

AT, o) = H (/T (v,)y) = H (Mp/T7INg) — H (/T 000).

Since (np)p /"¢, we have / (x/T7'a” (n,)r) — U, and the difference
H /T ) —H (/T m;0,)  does not exceed the difference in (54),
because 7 'n,cp <771, and so this also tends to zero. Consequently,
AT, @) = 0 and @ < (D).

12.6. If an automorphism T does not have an exhaustive partition other
than €, then h(T) = 0,

PROOF, If & is an extremal partition for T (see 12.5), then on the one

hand £ = €, and on the other hand 43 I"{:m(T). Consequently ™(T) = €
and h(T) = 0.

12.7. Examples show that there exist extremal partitions & such that
T, &) < KTy (see [13], [36]). It is not excluded that for any auto-
morphism T and any number ¢ with 0 < ¢ € W(T) there exists an extremal
partition & for which A(T, & = c. However, this generalization of
Theorem 12.5 is not proved even for a single automorphism with positive en-
tropy.

§13. Endomorphisms with completely positive entropy

13.1. We say that an endomorphism T has completely positive entropy if
each of its factor-endomorphisms Ty with & # v has positive entropy. An
equivalent condition: T(T) = V. Another equivalent condition: h(T, &) > 0
if £ e Zand E # V.

An endomorphism with completely positive entropy is ergodic. For if an
endomorphism T is not ergodic, then it has a fixed partition & # Vv, and
the corresponding factor-endomorphism Tg has zero entropy, because it is
the identity.

13.2. 1If the factor-endomorphism Ty of an endomorphism T has completely
positive entropy, then L and T(T) are independent.

It is sufficient to show that, for any two partitions & mn € Z such
that &§< £, n¢ T, the following holds:

H (&) = H (8) (56)
(see 5.10).
For any positive integer p,

H (E) > H (E/m) > H (/T 7E7en). (57)



40 V.A. Rokhlin

As M < T, the partition N~ is completely invariant (see |l.l) and so, for
any positive integer n,

0 =T ()re, H (E/T7"Ere) = H (ET"EreT™"" (nT)rr).

This makes it possible to apply Theorem 7.6, with 7P in place of T, to the
right-hand side of (57). The result: H (§/1 PE&rrm) = H (§/7"Erp). As T(TY)
is trivial and £ &, we have T7PE" (v (see 12.3). Therefore

H (&/T"Erp) > H (§/T-PE) / H (E), and (56) follows from (57).

13.3. If the set of partitions & € Z for which the factor-endomorphism
Tg- has completely positive entropy is dense in Z, then the endomorphism T
has completely positive entropy.

PROOF, If the factor-endomorphism T}- has completely positive entropy,
then H(E/™M(T)) = H(E) by Theorems 13.2 and 5.10. Consequently, the set of
partitions & for which this equation is true is dense in Z and by
Theorem 6.6, T(T) = V.

13.4. If the factor-endomorphisms Ty, ,Tr,, ... of an endomorphism T
have completely positive entropy and T, /T, then T has completely posi-
tive entropy.

This follows from Theorems 13.3 and 6. 3.

13.5. Every endomorphism T has a maximal factor-endomorphism with com-
pletely positive entropy. (The factor-endomorphism is a factor-automorphism
if T is an automorphism.)

This follows from the preceding theorem and Zorn’s Lemma.

13.6. M.S3. Pinsker, who discovered Theorem 13.2, suggests that it
might be possible to decompose every ergodic automorphism into the direct
product of an automorphism with completely positive entropy and an auto-
morphism with zero entropy (see [17]). Whether this is true is not known
so far. Examples show that a maximal factor-automorphism with completely
positive entropy (which exists for every automorphism by 13.5) is not
unique.

13.7. If the largest factor-automorphism Ta of an endomorphism T
(see 3.5) has completely positive entropy, then T also has completely
positive entropy. _

PROOF. As T; is a factor-automorphism and Ta is the largest factor-
automorphism of T, we have TW(T) € a(T). Consequently, if T, is an auto-
morphism with completely positive entropy, then T(T) = V.

13.8. The natural extension of an endomorphism with completely
positive entropy is an automorphism with completely positive entropy.

This follows from Theorem 13.4: if & is an exhaustive partition under
an automorphism T, then Tn, /T, and all these factor-endomorphisms are
isomorphic to Ty,

Another proof depends on Theorem 12.1: if € is an exhaustive partition
under an automorphism T, then

and so the fact that the factor-endomorphism T; has completely positive
entropy implies that m(T) = v,
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EXACT ENDOMORPHISMS AND K-AUTOMORPHISMS

13.9. An endomorphism T is said to be exact if a(T) = v, that is, if
T has no non-trivial factor-automorphisms. An equivalent condition:

N 7-"m =, 58)
A (

13.7 implies that exact endomorphisms have completely positive entropy.
In particular, they are ergodic. This can be seen directly from (58): if
a set is measurable and invariant under T, then it is contained in the
algebra (58) and so has measure 0 or 1.

Bernoulli endomorphisms are examples of exact endomorphisms.

13.10. If T is an automorphism with completely positive entropy, then
by Theorem 12.5 there exists a partition £ with the properties:

Tt >t {?T"c:e, §T~"c:v, (59)

By 12.1, every automorphism T having a partition £ with these properties
has completely positive entropy.

The conditions (59) are older than the theory of invariant partitions
given in §12: they occur in Kolmogorov’'s work {13], starting from the en-
tropy theory of measure-preserving transformations. Starting from
probability theory arguments Kolmogorov called automorphisms having a
partition with the properties (59) quasi-regular. Later they were called
Kolmogorov automorphisms or K-automorphisms. Thus, we may say that the
class of automorphisms with completely positive entropy coincides with that
of K-automorphisms.

As examples of K-automorphisms we can take Bernoulli automorphisms: if
£ is the generator of a Bernoulli automorphism given in 3.6, then the parti-
tion & = & satisfies (59).

13.11. It is clear that the direct product of K-automorphisms is a K-
automorphism. As the natural extension of any endomorphism with completely
positive entropy is a K-automorphism (see 13.8 and 13.10), the direct
product of endomorphisms with completely positive entropy has completely
positive entropy.

§i4. Entropy and the spectrum

[4.1. LEMMA. If for any measurable partition £ of a space M there
exists a set A of positive measure without points of positive measure and
with L4 # €4, then the subspace L. (M) L.(M, ) is infinite-dimensional.

We preceed the proof with the following obvious remark: if X is an
arbitrary set of positive measure in M, then the subspace of L,(M) consist-
ing of functions equal to zero outside X can be identified with the
canonically isomorphic space L,(X) of all square-integrable functions on
the subspace X of M (see 1.2).and we have

Lo (X) © Lo (X, Ex) © Ly (M) © Ly (M, ©). (60)

’
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First we prove the lemma under the assumption that A = M. Since & # €,
we have Lo(M, &) # Lo(M) and in L, (M) there exists a function @ # 0 ortho-
gonal to Lo(M, &). Let B be the set of points x € M for which ®(x) # 0. By
(60) (with X = B) it is sufficient to show that
dim (L, (B) © Ly (B, Lp)) = oo. If dim L,(B, £B) < o, then this is im-
plied by dim L,(B) = . If dim L, (B, £) = o, then Lo(B, {g) contains an
infinite sequence of linearly independent orthogonal functions gi, gz, ...
and dim (L; (B) © Ly (B, {g)) = co because L, (B)O L, (B, {g) contains the
infinite sequence of linearly independent functions g;9, g9, ..

The case A # M reduces to A = M if by using (60) with X = A we go over
from M with partition & to A with partition &4.

14.2. If T is an endomorphism of a space M and £ is a measurable
partition finer than T(T) other than €, then the space Ly(M)S Ly (M, ¥)
is infinite-dimensional.

By the previous theorem it is sufficient to prove that there exists a
set A C M of positive measure and without points of positive measure such
that £4 # €4. If this is not the case, then there exists an element of
and hence an element of T(T) containing two points of positive measure.
Let Y be the partition of M into one of these points and its complement.
Clearly, Y cannot be coarser than T(T), but the factor-endomorphism 7&- is
a periodic automorphism and so has zero entropy.

14.3. If T is an automorphism of a space M, then the operator Ur has
a Lebesgue spectrum of infinite multiplicity in the subspace
Ly (M) © Ly (M, 7)

PROOF. Let £ be an extremal partition for T. For any integer n we put

Ho=UrLy, (M, ) QUT Ly (M, ¥).

Since
/—7L2 (M) as n-—> oo,
U} Ly (M, §)= Ly (M, T-7)
Lo(ﬂf ﬂ) as n-——oo,
we have
Ly(M)©D Ly, (M, nt) = @ H,. (61)
n=-—oo

By Proposition 14.2 applied to the factor-endomorphism T the subspace
Ho is infinite-dimensional. Let fq,fs, ... be a basis in Ho. (61) shows
that the functions U"f, form a basis in Ly (M) © Ly (M, nt). Thus, Ur has a
Lebesgue spectrum of infinite-multiplicity in LZ(AI)GELLZ(AI’][L

i4.4. COROLLARIES. An automorphism with completely positive en-
tropy has a Lebesgue spectrum of infinite multiplicity.

Automorphisms with discrete spectrum have zero entropy.

Automorphisms with singular spectrum have zero entropy.

Automorphisms with a spectrum of finite-multiplicity have zero entropy.

I4.5. There exist automorphisms with zero entropy having a Lebesgue
spectrum of infinite multiplicity. The first example of this kind was con-
structed in 1959 by Girsanov, but was not published. There is also an
example recently published by Newton and Parry {49].

One of the classical unsolved problems of the theory of measure-preserv-
ing transformations is: what spectral properties must a unitary operator Ur
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have to be adjoint to an ergodic automorphism? Theorem 14.3 reduces this
to the problem of ergodic automorphisms with zero entropy.

I4.6. We turn now to endomorphisms. According to 1.6 and 2.6 the
equation

implies that -
N UHLo (M) == Ly (M, ),

and that the unitary part of Ur is canonically isomorphic to the operator
Ur, adjoint to T,. I4.2 implies that the defect of Ur is wonly if T is
not an automorphism. Combining these facts with Theorem 14.3 we see that
the operator Ur adjoint to an arbitrary endomorphism T has the orthogonal
decomposition:

Up=Ur, W =Ur_ ®V@OW,

where V is a unitary operator with a Lebesgue spectrum of infinite-multi-
plicity and W is a semi-unitary operator with a homogenous spectrum of
infinite multiplicity or zero. If T is an endomorphism with completely
positive entropy, then UT" is the identity transformation on the one-dimen-
sional space C(M). If T is an automorphism with completely positive entropy
or an exact endomorphism, then also W= 0 or V= 0. If T is an automorphism
with zero entropy, then V= W= 0.

§15. Entropy and Mixing
15.1. LEMMA. If T is an endomorphism, fo is a function in L,y(M)

orthogonal to Lo(M, T(T)) and fy, ..., f, are bounded functions in L,(M),
then for any sequence of complexes of non-negative integers
(kY ooy BTy (BY, oo RD), L, (62)

satisfying the conditions

B <kl <...<<hl, ki—FK)— oo,
the following holds:

r i
(I Uzfi, 1) —0. (63)
i=

PROOF. We assume first that T is an automorphism and that the functions
fi, «.., fr are in Lo(M, &), where £ is some extremal partition. Then the
scalar product (63) has the form (fo, g,), where g, is the complex con-
jugate of the product

r ki—ko
II‘ U " "fiv

i==
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and since k; - kg < k; - kg for i > 1,
k —r® —(rl —nd)
gnEUy Ly(M,8)=Ly(M, T 0. (64)
Therefore
l(fo» gn)l:l(Pnva gn)|‘<l‘Pnf0‘l'|lgnllv

where P, is the projection operator onto the subspace (64), and 7"\ n

implies that
el _x0
Ur* "Ly (M, {) \ L, (M, m),

so that || Pnfo||— 0. Since the functions fi, ..., fr are bounded, the
sequence of norms |ig,|| is bounded and so (fo, g,) - O.

In the general case Theorem 12.1 allows us to replace an endomorphism
T by its natural extension, that is, to regard it as an automorphism, and
Theorem 12.5 allows us to construct an extremal partition (o for this auto-
morphism. We make a bounded approximation of fi, ..., f, by functions in the
subspace U}PLQ(M; Loy = Lo(M, TPL,) for a sufficiently large p and apply
the case already treated (with the same fo and with L= TPly). So we get
the complete result.

156.2. Every endomorphism T is mixing on any sets Ao, ... A, independent
of the partition W(T).

An equivalent formulation: an endomorphism T is mixing on any bounded
functions fo, ..., f,r independent of the partition ™(T).

It is sufficient to show that for every sequence (62) satisfying the
conditions

kS << kb << ...<<kh,  min (k) —kb)— oo,
0<i<jgr

the following holds:
r hi r
(iLI() UT"fii 1) —> iI:IO (fi7 1). (65)

The proof proceeds by induction on r. For r = 0 (65) is trivial., We
assume that
r i r
(11 Ur"ti )= [ (£ ). (66)
i=1 i=1
The fact that fo is independent of T(T) implies that its projection on
L,(M, ™) is equal to (fo, 1). Therefore the function fo =fo — (fo, 1) is
orthogonal to L,(M, m) and by Proposition 15.1, the first term on the
right-hand side of

r i 0 r i r i
(1 U7 0= F; 1] U7 )+ (o 0 (1] U7 1)

converges to zero. Combining this with (66), we obtain (65).

COROLLARY. An endomorphism with completely positive entropy is
mixing of all orders.

The converse of this theorem is not true; there exist automorphisms with
zero entropy that are mixing of all orders. In particular, Girsanov’s auto-
morphism, mentioned in 1%.5, has this property.
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§16. Entropy and the isomorphism problem

16.1. The first application of entropy in the theory of measure-pre-
serving transformations was made by Kolmogorov in 1958 (see [13] and [14]).
and was concerned with the partially solved isomorphism problem, that
is, the problem of classifying automorphisms of a Lebesgue space with re-
spect to isomorphism (mod 0).

Before Kolmogorov's work on this problem there had been no progress
for quite some time. It has been known for some time that the classifica-
tion of non-ergodic automorphisms reduces to the classification of the
ergodic automorphisms, that two ergodic automorphisms with discrete spectra
are isomorphic if and only if they are spectrally isomorphic and that this
is not true for automorphisms with a mixed spectrum. This last fact was
established with the help of special invariants organically connected with
the presence in the spectrum of both discrete and continuous components.

In the case of continuous spectrum the only available invariants were the
spectral ones. It was not possible to establish that spectral isomorphism
does not imply isomorphism.

This was proved by Kolmogorov with the help of entropy. As examples he
used Bernoulli automorphisms: all these, apart from the trivial case, have
Lebesgue spectra of infinite multiplicity and the entropy (or what comes
to the same thing in this case, the invariant h,; see 10.1) can have any
positive value.

}6.2. At present automorphisms with completely positive entropy are
the most interesting. This is due to their special position in both the
general theory and in applications. In the first place, there is the
isomorphism problem. We donot exclude the possibility that two automorphisms
with completely positive entropy are isomorphic if their entropies are
equal. If this were so, then every automorphism with completely positive
entropy would be isomorphic to a Bernoulli automorphism.

The problem can be restricted to Bernoulli automorphisms. This case
was first examined by Meshalkin [16] who proved that if the spaces of
states of the Bernoulli automorphisms T and T' are finite and the probabili-
ties of all the states are powers of a single rational number, then
MT = WT'Y implies isomorphism. For example, spaces of states with
probabilities 1/4, 1/4, 1/4, 1/4 and 1/2, 1/8, 1/8, 1/8, 1/8 produce iso-
morphic Bernoulli automorphisms. Meshalkin’s work attracted the attention
of many mathematicians; partial results have been obtained, but the com-
plete problem is still unsolved.

16.3. Sinai also studied this problem (see [32], [34]). He proposed
that one should consider a less stringent condition along with isomorphism:
he calls two automorphisms weakly isomorphic if each is the homomorphic
image of the other. Sinai’s main result: if S is a Bernoulli automorphism
with finite entropy not exceeding the entropy of an ergodic automorphism 7,
then S is a homomorphic image of T. In particular, two Bernoulli auto-
morphisms with the same finite entropy are weakly isomorphic.

To appreciate the importance of weak isomorphism we note that two
weakly isomorphic automorphisms have both the same entropy and the same
spectral invariants. A systematic study of other invariants (contained in
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unpublished work by Yuzvinskii) shows that the situation is the same with
these. Thus, at present we cannot distinguish between isomorphism and

weak isomorphism. This applies to endomorphisms as well as to automorphisms.
In measure theory there are simpler objects for which a complete classifi-
cation exists, such as Lebesgue spaces, measurable partitions, and measur-
able functions, for which it is not difficult to show that weak isomorphism
implies isomorphism.

16.4. The following problem appears to be more promising: does there
exist a universal automorphism with completely positive entropy such that
any automorphism with completely positive entropy is a homomorphic image?
The natural candidate is the Bernoulli automorphism whose space of states
has continuous measure. We do not exclude the possibility that this candi-
date is even isomorphic to its direct product with any automorphism with
completely positive entropy.

16.5. Let us discuss the problem of isomorphism for endomorphisms.
Here we have an obvious invariant, which is trivial in the case of an
automorphism — the decreasing sequence of partitions

g, Tle, T2%, ..., (67)

considered to within isomorphism. As was shown by Vinokurov, an endo-
morphism T is not specified by this invariant, taken to within equivalence,
even in the class of exact endomorphisms with generators in Z. Whether
much has to be added to the sequence (67) for a solution of the
isomorphism problem, even for this class of endomorphisms, is not known.
Vinokurov’' s proof does not contain explicitly defined new invariants.

There are entirely concrete situations in which this problem is of
interest. Suppose, for example, that T is a group endomorphism of the two-
dimensional torus with eigenvalues A; and A, and that S is a Bernoulli
endomorphism with space of states consisting of |X1k2‘ points of measure
INA2|=2. If |Ay] > 1 and |A,] > 1, then the endomorphism T is exact and
has a finite generator, and the sequence (67) is isomorphic to the sequence
€, S-'e, S-%g, ... Are S and T isomorphic?

The preceding arguments call for a more intensive study of decreasing
sequences of measurable partitions. At present there exists a complete
metric classification of such sequences. The classification of certain
measurable partitions has been known for twenty years (see [20]); finite
decreasing sequences were discussed by Guseva [12]; the difficult transi-
tion to infinite sequences was recently carried out by Vershik. Vershik’s
main result: sequences {£.)7 and {ng}T are isomorphic if g, \ v and
MN» v and the sequences {&p}7 and {n,}7 are isomorphic for any n.

It would be interesting to clarify what conditions a sequence &,,&,,...
must fulfill for the existence of an exact endomorphism T with
T-re = En (n=1,2,...). The first thing to do is to prove or disprove
the statement: in a space with continuous measure for any measurable parti-
tion & having no elements of positive measure there exists an exact endo-
morphism T with 7" e = &,

If an endomorphism is not exact, the question arises whether it can be
decomposed into the direct product of an automorphism and an exact endo-
morphism. This problem is related to Pinsker’s problem (see 13.6).

Received August 20, 1966.
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APPENDIX

METRIC PROPERTIES OF ENDOMORPHISMS OF
LOCALLY-COMPACT GROUPS?

S.A. YUZVINSKII

Let G be a locally-compact group, M a Haar measure on G, and T an endo-
morphism of G. Then T is a measurable transformation which can be studied
from the point of view of measure theory.

First we make stronger assumptions: the group G is compact and has a
countable topological basis, and T maps G onto G. In this case G is a
Lebesgue space and T, because of uniqueness of the Haar measure, is an
endomorphism in the measure-theoretical sense.

To G there corresponds a set X of equivalence classes of irreducible
representations, and T indices the transformation U: X - X defined for a
representation A by the formula UA(g) = A(Tg), g € G, and clearly this can
be carried over to the equivalence classes. If G is commutative, then X
becomes its character group and U the endomorphism of X adjoint to T. It
turns out that the ergodicity of an endomorphism T can be expressed in
terms of the set-theoretical properties of U: an endomorphism T is ergodic
if and only if all trajectories of the transformation U, apart from that
of the identity transformation, are infinite. (see [44], [22],and [48]).

1f T is ergodic then it satisfies stronger conditions in the theory of
measure-preserving transformations. In [44], [22], [26] the following is
proved: an ergodic endomorphism on a commutative group has a Lebesgue
spectrum of countable multiplicity, is mixing of all degrees and has
positive entropy. All these statements result from the more general theorem:
an ergodic endomorphism has completely positive entropy. (see [28], [38]).

The following concepts play an important part in the proof of this
theorem. Let F be the direct product of the sequence {H;} (i =0, +1,...)
(infinite in both directions) of copies of a compact group H with a count-
able topological basis. The automorphism R of the group F defined by
Rthi} = thl}, hi = hiyq (hi € H;), is called a Bernoulli group automorphism
with group of states H. Bernoulli group automorphisms result, for example,
from any ergodic automorphism on a connected compact group without centre
(see [38]).

An automorphism T of G is said to be densely periodic if G contains an
everywhere dense set A such that for any a € A there exists an integer n
for which T"a = a. Trivial examples of densely periodic automorphisms are
the automorphisms of finite-dimensional tori and the Bernoulli group endo-
morphisms. Non-trivial is the proposition: every ergodic automorphism of a
totally disconnected compact group is densely periodic. In the proof of
this statement in [38] there is a more precise description ergodic
automorphisms of a totally disconnected group: they are all skew products
of Bernoulli group automorphisms.

Another subject in the metric theory of group endomorphisms is the
calculation of their entropy. First we note the addition theorem: If H is

1 A lecture given at the Khumsan school on ergodic theory.
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a normal subgroup of G invariant under the endomorphism T, and if To and S
are the endomorphisms induced by T in H and G/H, then h(T) = h(S) + h(To)
vhere h is the entropy (see [38]). For the proof of this theorem and the
extension of its domain of applicability we have to define the concept of
entropy for an endomorphism that is not an epimorphism. This is trivial
and is given in {38].

The calculation of the entropy of endomorphisms began almost as soon
as the concept of the entropy of an automorphism appeared (see f30]).
Computations of entropy are in the papers [3], [6], 81 [9], f40]. The
most general result is contained in {40], where the entropy of an arbitrary
endomorphism T of a connected commutative finite-dimensional group is cal-
culated (the basic technical difficulties for this were overcome in [8]).
The character group of such a group is torsion-free and of finite rank,
and so the automorphism U for a fixed basis in X occurs as a matrix A with
rational entries. We denote by Ay, ..., Kr the eigenvalues of A and by s
the common denominator of the moduli of the coefficients of the character-
istic polynomial of this matrix. Then?!

R(T)=logs+ > log|hf. (h)
(A=t

Formula (h) makes it possible to define the entropy of a group endo-
morphism without using measure theory concepts. This means that the calcu-
lation of the entropy of an endomorphism of a compact group becomes a
problem in topological algebra. If G is commutative, then the definition
of entropy becomes purely algebraic and is given as follows.

Let X be a commutative countable group and U a one-to-one endomorphism
of X. We define the concept of algebraic entropy h,(U) of the endomorphism
U.

a) Suppose first that X is periodic. Then we put

00
h(Uyawpbgmd(VIWY/VlﬁYL
Yed n={

where 9 denotes the collection of finite subgroups of AX.

b) Now we assume that X is a torsion-free group. If X contains an
element xo such that for any polynomial p with integer coefficients
p(Uyxo # 0, then we put hqa(l) =

We assume for every x € X the existence of a polynomial p, with integer
coefficients such that p,(U)x = 0, We enumerate the elements of X in a
sequence x1,%s, ... and denote by X, the smallest subgroup of X containing
%1,%2, ..., X, and invariant under U. The rank of X, is finite, and so the
endomorphism U, induced by U in X, can be expressed with respect tg a fixed
basis in X, as a matrix A, with rational entries. We denote by k he
eigenvalues of A, and by s{n) the common denominator of the modu11 of the
coefficients of 1ts characteristic polynomial, and we put

ha (Un) =logs™ 4 >} log|A{™|.

128 121

1 Here and below the logarithm is to the base 2.
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The sequence {h,(Un)} is increasing, and so the following makes sense:
ho (U) =1lim kg (Uy).

Mn—=+00
¢) Finally we consider the general case. We denote by Y the periodic
part of the group X, by U, the endomorphism induced in Y by U, by V the
factor-endomorphism of U in X/Y, and we put

ha (U) =ha (V) -+ ha (Uo)-

This definition gives the entropy of an endomorphism in the usual sense.
To be precise, if G is the character group of X and T is the endomorphism
of G adjoint to U, then we have h(T) = ho(U) (see [40]).

If G is non-commutative, we denote by C the connected component of the
identity, by Z the centre of C and by To, S and R the endomorphisms induced
by T in Z, G/C and C/Z. Then the following are true (see [40]):

a) k(1) =h (To)+1(S) +h(R),
b) 4 (S) - suplogord (| T4/ | 7-"4),
AU 1 0

n= n=
where k denotes the collection of open normal subgroups of G/C.

c) If R is the direct product of automorphisms of Lie groups, then
h(Ry = 0. Otherwise h(R) = «

Together with the algebraic definition of entropy for commutative groups
these three statements give a topological-algebraic definition for the en-
tropy of a group endomorphism in the general case.

In conclusion we consider automorphisms of an arbitrary locally-compact
group. In this case T does not have to preserve measure. We call on auto-
morphism T ergodic if for every measurable set 4 either W(A) = 0 or
u(G\\A) = 0 and weakly ergodic if for any such A we have W(A) = 0 or
LW(A) = o Clearly the conditions for T to be ergodic or weakly ergodic do
not depend on the choice of the Haar measure on G,

All automorphisms that do not preserve measure are weakly ergodic.
There exist weakly ergodic automorphisms that preserve measure. As an
example we can take the linear transformation of the real plane given by

o 1)

and also the direct product of S with any group automorphism. This is not
a chance example: if a commutative group generated by a compact set, has a
measure-preserving weakly ergodic automorphism, then the plane is a direct
summand of it.

The fundamental theory in the metric theory of automorphisms of non-
compact groups is: an automorphism of a commutative or connected non-compact
group is not ergodic (part of this is proved in [39])*. It can be shown
that a general solution depends on a solution for a non-compact totally dis-
connected group. Whether an ergodic automorphism exists for such a case is
not known.

Received November 14, 1966.

1 Added in proof. This theorem is also proved in the recently published papers
(s2], [53], [s4].
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