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2 V.A. Rokhlin

Introduction

This article reproduces, with some additions, the second part of a
course of lectures at Leningrad University in the academic year 1962/63.
Its topic is a new development in ergodic theory connected with the concept
of entropy. The first part of the course was concerned with more classical
problems fully covered by the literature. Lecture notes by R.M. Belinskii,
S.K. Belinskii, and S.A. Yuzvinskii serve as the basic text.

For the convenience of readers the article begins with a short account
of the necessary concepts of measure theory, classical ergodic theory, and
the spectral theory of operators. A detailed account can be found in
articles by the author [2 ], [2l], Halmos' s book [37], and Plesner* s
book [l9]. Some statements, not explicitly contained in these works, are
proved. These preliminaries take up the first three sections.

L I T E R A T U R E . The theory expounded in this article is built up in
papers of Kolmogorov [l3], [l4], Sinai [30], Pinsker [17], Sinai and the
author [29], and the author [23], [25], [27]. Roughly, it can be described
as the general entropy theory of dynamical systems with discrete time.
Some important results, also concerned with this subject, are not contained
in this article; for example, Sinai's theorem on weak isomorphism (see
[32], [34]) is not proved, Abramov's theorem on the entropy of the derived
automorphism (see [l]) and the theorem by Abramov and the author on the
entropy of a skew product are not even mentioned (see [l] and [5]). The
list of results not covered by this article would be much longer if we
were to consider all the entropy theory of measure preserving transforma 
tions with invariant measure. It contains no general entropy theory for
flows ([l4], [2], [3l], [ll]), nor the entropy theory of transformations
and flows that occur in neighbouring domains of mathematics: the classical
theory of dynamical systems (see [33], [35], [36], [7], [  ], [  ]),
probability theory (see [l7], [l8]), number theory (see [25], [5 ]), and
topological algebra (see [30], [3], [2 ], [ ], [38], [4 ]). The reader who
wishes to extend his knowledge, must turn to the works listed (see also
Yuzvinskii's Appendix to this article and other articles in the series).

In conclusion, I must point out that there are already in the liter 
ature monographs dealing, partly or entirely, with the entropy theory of
measure preserving transformations: the survey articles [24], [45], [33],
[47] and the text books [43], [46], [42], [5l].

§1. Preliminaries from measure theory

I.I. It is assumed that the reader is familiar with general measure
theory. The measures that we shall encounter, are complete (that is, sub 
sets of sets of zero measure are measurable and have zero measure) and
normalized (that is, the measure of the whole space is 1)

A map from one measure space to another is said to be a homomorphism
if the inverse image of a measurable set is measurable and has the same
measure. A homomorphism is said to be an isomorphism if it is one to one
and the inverse map is also a homomorphism. If the spaces coincide then an
isomorphism is said to be an automorphism and an homomorphism an endomorphism.
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Two measure spaces are said to be isomorphic if an isomorphism can be
constructed between them. An endomorphism   in a space   is said to be
isomorphic to an endomorphism Tx in a space Mi if there exists an iso 
morphism S from   to M± such that 7\ = STS'1.

The most important principle of measure theory is that of neglecting
sets of measure zero. In accordance with this principle measurable sets and
endomorphisms are considered to within sets of zero measure or as we say
'modulo 0' (mod 0). For example, spaces   and M^ or their endomorphisms  
and 7  could be non isomorphic, but could be made isomorphic by removing
from   or M^ some set with measure 0, or an endomorphism   of a space  
that is not an automorphism might be made to be one by removing a set of
measure 0 from M. The addition 'mod 0' is often implied without being ex 
plicitly stated.

1.2. A countable system \Ba; a € A] of measurable sets is said to be a
basis of   if: "

a) for any measurable set X, there exists a set   in the system of
Borel sets generated by \Ba; a e A\ such that   D X and \i(Y   X) = 0;

b) for any two points   e M, y e   there exist an oi e A such that
either   e Ba, y   Ba, or   i Ba, y e Ba 

A space with a complete normalized measure and a basis is said to be
separable. A separable space   is said to be complete with respect to its
basis {Ba;   e A\ if all intersections f| Ea> where Ea is either Ba or

a. e A
    Ba, are non empty. A separable space   is said to be complete mod 0
with respect to its basis {Ba; a e A\ if it is a subspace of measure 1 of
a space M' that is complete with respect to its basis {B'a; a e A], such
that Ba f]   = Ba. If a separable space is complete mod 0 with respect to
one basis, it is complete mod 0 with respect to all bases. Such spaces are
called Lebesgue spaces and their measures, Lebesgue measures.

A Lebesgue space contains at most a countable set of points of positive
measure. If this set is empty, the measure is said to be continuous; if it
exhausts (mod 0) the whole space, the measure is said to be discrete. A
Lebesgue space with a continuous measure is isomorphic mod 0 to the unit
interval with the usual Lebesgue measure. The product of a finite or count 
able collection of Lebesgue spaces is a Lebesgue space.

A homomorphism of a Lebesgue space onto a Lebesgue space takes every
measurable set that is an inverse image into a measurable set. In particular,
a one to one homomorphism is an isomorphism. However, a measurable set that
is not inverse images can be taken by the homomorphism into a non measurable
set.

If   is a Lebesgue space and C is a measurable set in   with \i(C) > 0,

then the formula HC6¥) = , where X is a set contained in C and measur 
0

able in M, turns C into a Lebesgue space with measure Uc. This space is
said to be a subspace of M.

Henceforth it is assumed that all subspaces are Lebesgue.
1.3. Any collection of non empty disjoint sets that cover   is said

to be a partition of M. Subsets of   that are sums of elements of a
partition   is called C sets.
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A countable system {Ba;   e A\ of measurable   sets is said to be a
basis of C if, for any two elements C and C' of  , there exists an (X e  
such that either C c   , C" £    or C <£ Ba, C" c Ba. A partition with a
basis is said to be measurable.

We write C < C if C is a subpartition of C.  <  ' and C = C are
both considered up to mod 0.

For any system of measurable partitions [Ca\ there exists a product
V£ai defined as the measurable partition C satisfying the two conditions:
a

 

Ca< C for all a; if ζα< C for all a, then C< C The product V li
lis also denoted

For any system of measurable partitions {  }, there exists an inter 
section  £ > defined as the measurable partition   satisfying the two con 

a
tions: Ca> C for all a; if ζα > C for all a, then C> C

CO

The symbol ζη /  ζ indicates that d < Ca < · · · and V L· =  ζ· The
oo

symbol    \   indicates that CL > Ca ̂ ... and      =   
n=l

A partition of  / into distinct points is denoted by  . The trivial
partition, having the single element M, is denoted by V.

If BltBs, ... is a basis for the partition   and  π is the partition
of   into the sets Bn and     Bn, then the partitions    =    2 ...   

form an increasing sequence and \J t,n =  . Thus, for any measurable
partition C there exists a sequence of finite partitions t^ such that
   /* . Measurable partitions   and   are said to be independent if
µ(     ) = [  · µ  for any measurable 5 set A and any measurable   set B.

The set   is called independent of the measurable partition £ if the
above equation holds for any measurable   set A.

A function /, defined on M, is said to be independent of   if all its
Lebesgue sets are independent of £.

1.4. From the collection of all measurable sets we obtain classes of
sets, the elements of each class being equal mod 0, and we denote the set
of classes by XJi. The operations of countable union, countable intersection
and subtraction of sets goes over to the same operations on classes, making
$0i an algebra. Any part of 3J? that is closed with respect to these
operations is said to be a subalgebra of 3JJ.

It is clear that the intersection   2Jla of any system of subalgebras

Wa of 1 is a subalgebra of M. The sum V ̂ a of subalgebras 9tta is
a

defined to be the intersection of all subalgebras that (each) contain all
the *ma. If Wi <= mz cz .. , and V Wn = W, then we write    / W.
If SRi r> ?Di2 =>..., and fl SWre = 5Dl', then we write 3Kn \ W.

Among the subalgebras of 9Ji there is a largest   3JI itself, and a
smallest   the trivial algebra  JI consisting of the class of sets of
measure 0 and the class of sets of measure 1.

For any measurable partition £, we denote by W ( ) the subalgebra of 9#
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consisting of classes of measurable S sets. If 331 ( )  =W ( '), then £ = £',
and for any subalgebra of 331 there exists a measurable partition £ such
that SDi ( ) is the subalgebra. Thus, the subalgebras of 33  are in one to 
one correspondence with the classes of (mod 0) equal measurable partitions.
Here 33  ( ) c= 331 (%') if and only if £ < £',

9K ( V la)    V 2Ji (  ) , 33  (   U    1 SOI (la).
a a a

In particular, 33  (  ) / 331 ( ) is equivalent to  »  
7   and 33  (  ) \33i(|)

to    \ 1. We note that 331 ( )   33 , 331 ( ) =  $l.
The distance p(A,B) between measurable sets A and   is defined by the

formula p(A,B) = \i((A\JB)   (A (]B)). The function   makes 93i a complete
separable metric space. The operations of union, intersection and sub 
traction are continuous with respect to this metric.

1.5. The factor space of   with respect to   is the measure space
whose points are the elements of C and the measure \   defined as follows:
let   be the map taking each point   e   to the element of   in which it is
contained; a set   is considered to be measurable if p'1(Z) is measurable
in M, and we define    ( ) = µ( "1( )). We denote this factor space by M/C
It is clear that   is a homomorphism of   onto M/C. This natural homomor 
phism is said to be a projection. The factor space of a Lebesgue space with
respect to a measurable partition is a Lebesgue space.

1.6. As usual, we denote by L2(M) the unitary space of square
integrable functions on M; by (/, g) the scalar product of /, g e L2(A/);
by 11/11 the norm of /.

For any measurable partition   we denote by L2(M,  ) the subspace of
L2(M) consisting of the functions that are constant on the elements of  .
L2(M,   contains the characteristic functions of the sets of 3R ( ) and
is generated by these functions. It follows that L2(M, C) = L2(M, C) if
and only if   =  '. It is also clear that L2(M,  ) C.L2(M, C) if and only
if  <  ', and that    /'  is equivalent to

L2(M,   ) /'L2(M,  ), (1)

and  ,  \   is equivalent to

L2(M,   ) \L2(M,  ). (2)

Formula (1) means, of course, that

Lz ( ,  {) cz L, ( ,  2) c . . ., \J L2 ( ,   )  ..= L2 ( ,  ),
and formula (2) that

L2 ( ,  ,) =D L2 (  ,  2) =>...,   L2 ( ,   ) =, L, { ,  ).

It is also clear that L2(M,  ) = L2(M), L2(M, v) = C(M), where C(M) is the
one dimensional subspace of constants.

For any measurable partition C, L2(M, C) is canonically isomorphic to
L2(M/Q: the function / e L2(M/C) corresponding to the function g e L2 (M,C)
defined by g(x) = f(px),   e M, where   is the projection.
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1.7. A canonical system of measures or a system of conditional
measures, belonging to a partition C, is a system of measures {Mpi, C e   ,
satisfying the two conditions:

a) li.c is a Lebesgue measure on C, C e C;
b) for any measurable set X C M, the set X f] C is measurable in C for

almost all points C e M/C The function ^(X f] C) is measurable on M/C for

µ(*)= \ ^ ( i n o ^ .
 / 

Every measurable partition has a canonical system of measures, and any
two systems |HC| and {\i'c\ belonging to the same partition C are identical
mod 0 (that is, µ^ = \ic for almost all C e M/C).

If \i(C) > 0, then µ 0 coincides with the measure in C defined in 1.2.
If C is a measurable partition and C is a subspace of M, then we de 

note by Cc the partition of C induced by C  Generally, C c denotes the
partition induced by C in the element C of another measurable partition  
(regarded as a Lebesgue space with measure U c ) . ^ c is measurable.

Let £ and   be measurable partitions such that £ >   and let A be an
element of £ and C an element of   containing A. As an element of the
partition £ of M, A is a Lebesgue space with measure µ^. On the other hand,
as an element of the partition £ c of C with measure V c, A is a Lebesgue
space with measure (µ^)^· The uniqueness of canonical systems of measures
implies that (µ^)^ = P^ for almost all A e M/C. This property is called
the transitivity of a canonical system of measures.

Measurable partitions £ and   are said to be independent relative to  
if, for almost all C e M/C, the partitions £ c and  ^, are independent.

1.8. Prom the definition of a canonical system of measures it follows
that if a (complex) function / is integrable on M, then for almost all
C e  /  the section fc defined by the formula

fc(x) = f(x) if   e C,

is integrable on C and

\ / ( )  µ = \  µ; J fc ( )  µ .
   /  C

If / e L2(M), then the inner integral is in L2(M/Q (Schwarz's in 
equality), and the function

corresponding to it in the canonical isomorphism between L2(M/C) and
Lz(M, C) can be considered as the result of averaging / on the elements of
C The operator    .12( )  » L2(M, Q defined by £ /( ) = g(x) is called
the averaging operator on C.

We show that    is an orthogonal projection operator onto L2(M,  ).
Since for any function / e L2(M)
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it is sufficient to prove that, for any / e L2(M), the function /  
is orthogonal to L2(M,  ), that is, (    /.g) = 0 if / e L2(M), geL2(M,Q.
Let /i and gj. be the functions in L2(M/C) related to £ / and "g by the
canonical isomorphism between L2(M, C) and L2(M/Q. We have

(/, g) = J  µ  J / ( )  (7) µ  = J ̂ (C) < µ  J / (a:) «/µ  =
Af/E C  /  C

= \ ft (Q A (C)     =   ̂ £  / (a:)  µ = (Erf, g).
 /   

1.9. Let Ci.Ce, ... be a sequence of measurable partitions of M.
According to 1.6 if    /  , then L2(M, £„) / L2(M,  ) and if    \  ,
then L2(M,   ) \L2(M,  ). Comparing this with 1.8, we see that in both
cases    f  »   / in  2( /) for any function / e L2(M).

We denote by p n and   the projection operators from   onto M/Cn and
 // . If / is the characteristic function of a set X C M, then

£ E n / (a;) = µ  ( ) (X (] pn (x)), Erf (x) — µ  (  ) (      («))·

Consequently, if   /^  or   \  , then, for any set X Q M there is a
sequence of functions µ  ( )( ' f) pn(^)) tending to Up(^)(^ f) p(x)) in
L2(il/).

1.10. For any measurable partition   with discrete conditional
measures µ   (that is, with finite or countable mod 0 elements B) there
exists a finite or countable measurable partition   such that   =  .
Moreover,   can be chosen such that for an indexing CltC2, ... of its
elements the conditional measures of the single point intersections Cj f]  
of the elements with each element   of   form a decreasing sequence:

µ  (C1 fl  ) > µ  (C2    ) > .. .

§2. Isometric operators

2.1. Let ffbe a separable unitary space. An isometric operator in  
is an isomorphic transformation of   onto a subspace. An isometric operator
U acting in   is said to be unitary if UH =   and semi unitary if UH is a
proper subspace of H. The dimension of the complement in  Q UH is
called the defect of U. A subspace G of   is said to be invariant under £/
if i7G C G, and completely invariant if t/G = G. The operator U\G induced
in an invariant subspace G by an isometric operator U is also isometric.
It is called a part of U and is unitary if and only if G is completely in 
variant. If   is the orthogonal sum of invariant subspaces H^, then we say
that U is the orthogonal sum of the U^ = f/|//j, and we write: U = © £/;.

Operators i/ and i/' defined in unitary spaces   and H' are said to be
isomorphic if there exists an isomorphic transformation V from   to //'
such that U' = Ft/K"1.

2.2. In what follows we need Lebesgue Stieltjes measures on the unit
circle C= {z: \z\ = 1} in the complex z plane. By definition, two such
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measures belong to the same spectral type if they are absolutely continuous
with respect to each other. The relation of absolute continuity transferred
from the measures to their types is called subordination and is denoted by
the symbol <. If   <   (that is,   <   and   4  ), then we say that the
type   is strictly subordinate to the type  . This relationship of sub 
ordination defines a (partial) order in the set of types. Any finite or
countable set of types has an upper and a lower bound, namely the sum and
the intersection. In the set of all spectral types there is a smallest type
0, the type of the measure   = 0. The type of the usual Lebesgue measure is
said to be Lebesgue and is denoted by  

If U is a unitary operator acting in H, then for any vector / e   there
exists a unique Lebesgue   Stieltjes measure p, on C such that

" dpf (n = 0, + 1 , . . . ) .

The spectral type of this measure is denoted by Pt.
2.3. For every vector / of a space   in which a unitary operator U acts

there is a minimal completely invariant subspace H(f) containing /, which
we call the cyclic subspace generated by the vector f. If H(f) = H, then /
is said to be a generator of the operator U. An operator having a generator
is said to be cyclic.

If / and g are generators of U, then Pj = pg; in other words, all
generators of a cyclic operator U give the same spectral type. This is said
to be the spectral type of the cyclic operator and is denoted by p(U). It
is maximal: spectral types corresponding to other (non generating) vectors
are strictly subordinate to p(i/).

2 . Every unitary operator can be expanded as the orthogonal sum of
cyclic parts  / , /2, ... satisfying the condition

It is convenient to assume that the sequences f/i,f/2, ... and   \),  ( /2),...
are infinite: if they are finite, we add zeros. From the theory of unitary
operators we know that a sequence p(t/i), p(U2), ... satisfying (3) does not
depend on the choice of the expansion U = @Ut. We put Pi(U) = p(f/j) and
call Pi(U), p2(U), ... the spectral sequence of U. It follows from what we
have said that operators U and V are isomorphic if and only if
Qn(U) = pn(V) (n= 1,2, . . . ) .

2.5. A unitary operator U has, by definition, a simple spectrum if
p2 = 0 and a multiple spectrum if p 2 ^ 0. Clearly, an operator has a simple
spectrum if and only if it is cyclic.

The multiplicity of a non zero spectral type   is the number of elements
of the spectral sequence that are subordinate to p. We denote by p^U) the
intersection of all non zero elements of the spectral sequence. If
Poc(^) =^0, the multiplicity of p^, is said to be the multiplicity of the
spectrum of U (if p<d.U) = 0 the multiplicity of the spectrum is not defined).
The spectrum is said to be homogeneous if all the non zero elements of the
spectral sequence are equal to each other. If all the elements are subordi 
nate to \ the spectrum is said to be absolutely continuous. If all the
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terms of a spectral sequence are singular (that is, the corresponding
measures are singular with respect to  ), the spectrum is said to be
singular. If all the terms are discrete (that is, are types of discrete
measures), the spectrum is said to be discrete (this is equivalent to the
requirement that the orthogonal sum of the eigenspaces is H). If all the
elements are continuous (that is, are types of continuous measures), the
spectrum is said to be continuous. Continuity of the spectrum is equivalent
to U not having any eigenvalues.

As an example of a homogeneous continuous spectrum we can take the
Lebesgue spectrum. We say that a unitary operator U has a Lebesgue spectrum
if all the non zero elements of its spectral sequence are equal to   . An
equivalent definition: the space   is the orthogonal sum of completely in 
variant subspaces and in each of them there is a complete orthogonal system
!/„, n = 0, ± 1, ...!, such that Ufn = fn + i.

2.6. As an example of a semi unitary operator we can take the operator
defined by the formula Ufn = fn + lf where fo,fx, ... is a complete ortho 
gonal system in H. This is an elementary semi unitary operator. An ortho 
gonal sum of   elementary semi unitary operators (p being an integer or co)
is said to be a semi unitary operator with a homogeneous spectrum of multi 
plicity p. Clearly, the defect of such an operator is p.

Turning to an arbitrary semi unitary operator we consider the inter 

section   = f] UnH. From the obvious inclusions   ZD UH ZD U2H ZD . . .
n — o

it follows that this intersection is completely invariant and that U\H
is a unitary operator. The orthogonal complement I/1 — 7/ Q /Jo is also in 
variant under U and, clearly,

n=0 V ;

where 0 is the zero subspace. On H1 the operator U has a homogenous
spectrum.

For let \ha\ be a complete orthogonal system in H
l Q UH1 and let Ha

be the closed linear hull of the sequence ha, Uha, U
2ha, ... Clearly, the

vectors Unha are pairwise orthogonal. Consequently, the subspaces Ha are
pairwise orthogonal and in each of them U is an elementary semi unitary
operator. By (4) the system Wnha\ is complete in H1. Thus, the orthogonal
sum of the Ha is the whole of H

1.
We note that Hx Q UH1 =   Q UH, so that the number of subspaces Ha

is equal to the defect of U.
So we have shown that for any semi unitary operator U the space   is

the orthogonal sum of invariant subspaces   and H1, in the first of which
U is unitary while in the second U has a homogenous spectrum whose multi 
plicity is equal to the defect of U.

The operators induced by U in   and H1 are said to be the unitary part
and the homogenous part of U.

It follows from what we have said that two semi unitary operators are
isomorphic if and only if their defects are equal and their unitary parts
are isomorphic.
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§3. Measure preserving transformations

1.I. Every endomorphism   of a space   has an adjoint operator Uj
acting in the unitary space L2(M) and defined by the formula

UTf(x) = f(Tz), f£L2(M), x£M.

Uf is an isometric operator. If   is an automorphism, Uf is unitary; other 
wise it is semi unitary. If     and Ufi are operators adjoint to endomorphisms
  and Tj. and are isomorphic, then   and Tt are said to be spectrally iso 
morphic. Properties of an endomorphism that are common to all endomorphisms
spectrally isomorphic to it, are called spectral. Clearly, an isomorphism
of two endomorphisms implies their spectral isomorphism. The converse is
not true; see 16.1.

The spectral characteristics of Uf are often attributed to   itself.
In particular, we talk of the eigenvalues of an endomorphism, of their
multiplicities and of automorphisms with a discrete spectrum. Some clari 
fication of the terminology used in connection with the continuous part of
the spectrum is needed. Since 1 is an eigenvalue of every Uj (the constants
are invariant functions), the spectrum of such an operator can never be
continuous. We say that an automorphism   has a continuous spectrum if the
operator    has a continuous spectrum in the orthogonal complement
Lz (M) 0 C (M) of the subspace of constants. Similarly we define Lebesgue
and absolutely continuous spectra for automorphisms.

3.2. An endomorphism   is called ergodic if every measurable set A
that is invariant underT(T~M = A) has either measure 1 or measure 0. An
equivalent condition: every invariant function in L2(M) is a constant,
that is, 1 is a simple eigenvalue of Uf. Thus, ergodicity is a spectral
property.

If   is not ergodic, then it can be decomposed into ergodic components
in the following sense. We say that a partition   is fixed under   if it is
measurable and its elements are invariant under T. We denote by T» the
transformation induced by   in an element C of a fixed partition  . TQ is
an endomorphism of C (with measure p.c) and is said to be the component of
  in C. It can be shown that in the set of all measurable partitions fixed
under   there is a finest mod 0 partition and that   is ergodic in the
elements of this partition.

3.3. An endomorphism   is said to be periodic at a point   e   if
there exists an integer   such that     =  .   is said to be aperiodic if
the set of points of periodicity has measure zero. If the measure in   is
continuous, then every ergodic endomorphism is aperiodic.

If   is an aperiodic endomorphism, then for any positive   there
exists a measurable set A of measure less than   such that a finite number
of the sets  ~  cover M.

If   is an aperiodic automorphism, then for any natural number   and
any positive  , there exists a measurable set A Q   such that the sets
 ,  , ..., Tn'1A are pairwise disjoint and the complement of their union
has a measure less than  .

3.  . We say that the endomorphism   is mixing on the sets Ao, .... Ar

if, for any sequence of complexes of non negative integers
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(fe°  k[), (k° , .·., k^), ... satisfying the condition

l im m in | k3
n — kl

n\  — oo
n >oc 0 <j^i'

the relation

r i r

1   µ(        )= [] µ {At)

holds. We say that   is mixing on the bounded functions f0, ..., fr if for
every such subsequence of complexes

lim (5)

Clearly, the endomorphism   is mixing on the sets Ao, ..., Ar if and only
if it is mixing on the characteristic functions of these sets. The usual
approximation of bounded measurable functions by linear combinations of the
characteristic functions of their Lebesgue sets shows that an endomorphism
that is mixing on Lebesgue sets of the bounded functions /0, .... fr (that
is, on any sets Ao Ar such that A^ is a Lebesgue set of /{) is
mixing on the functions f0, ... , fr.

We say that an endomorphism   is mixing of degree r if it is mixing on
any measurable sets AQ Ar or, equivalently, mixing on any bounded
measurable functions f0, ..., fr.

Mixing of degree 1 is simply called mixing. We know that it implies
ergodicity and that it is a spectral property of an endomorphism. It is
not known whether mixing of degree r > 1 is a spectral property.

3.5. A measurable partition       is said to be invariant under the
endomorphism   if T~1C4  , and completely invariant if T~  =  . In the
set of all invariant measurable partitions finer than a given partition <5

there is a coarsest £~ =  ,  defined by the formula  ~= \/ T~hl·,, and the
fe=0

equation £" = S, is a necessary and sufficient condition for the invariance
of £. Similarly, if   is an automorphism, the partition

is the coarsest completely invariant measurable partition finer than S, and
the equation S,T = £ is a necessary and sufficient condition for the com 
plete invariance of £.

A measurable partition £ is said to be a generator of an endomorphism
  if  ~  =  . A measurable partition is said to be a two sided generator of
an automorphism   if  ,  =  .   is said to be exhaustive under an auto 

oo

morphism   if it is invariant and \J     =  .
 

If   is invariant under an endomorphism T, then   induces a factor 
endomorphism    in the factor space  / . This is an automorphism if and
only if   is completely invariant. Ergodicity of   implies ergodicity of   .
If   is mixing of degree r, then    is also mixing of degree r.
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The partial order in the set of measurable partitions induces a partial
order in the set of factor endomorphisms of an endoraorphism T. In particu 
lar, if   / , we write     / Tz.

In the set of all partitions that are completely invariant under an
endomorphism   there is a finest   = < ( ) defined by the formula

a=   T~nz.
 

The corresponding factor automorphism Ta is the largest factor auto 
morphism of T.

An endomorphism 7V M±  > A/A is said to be a homomorphic image of an
endomorphism  :    »   if there exists a homomorphism 5:    »  /j. such that
5 T = TjS. 5 is called the connection.

Every factor endomorphism of an endomorphism   is a homomorphic image
of T; the connection is the projection    » M/Z. Conversely, every homo 
morphic image of   is isomorphic to one of its factor endomorphisms.

3.6. As examples, we consider the Bernoulli automorphisms and endo 
morphisms. Let X be a Lebesgue space and   a direct product, infinite in
both directions, of a sequence of copies of X. A point of   is a sequence
^xn\. *n e X (n = 0, ± 1,.. . ) . A Bernoulli automorphism with the set of
states X is the automorphism   defined by T{xn\ = {yn!, yn = *„_,_ x. if the
sequence U n | is infinite in one direction only (n = 0,1,2,...), we obtain
a. Bernoulli endomorphism.

We denote by 5 the partition of   defined by the condition: points \xn\
and \yn\ belong to the same element of the partition if x0 = yo  Clearly,
£ is a generator in the one sided case and a two sided generator in the
two sided case. In both cases the factor space M/S, is isomorphic to the
space of states X.

3.7. An automorphism 7" is said to be a natural extension of an endo 
morphism   if T' has an exhaustive partition C such that the factor endo 
morphism    is isomorphic to T. For example, a Bernoulli automorphism is a
natural extension of a Bernoulli endomorphism with the same set of states:
for   we can take the partition S", where £ is the two sided generator of
3.6.

In [25] it is proved that every endomorphism   has (to within iso 
morphism) a unique natural extension and that it is ergodic if and only if
  is, and is mixing of the same degree as T. The spectrum of the natural
extension is determined similarly. By virtue of all this we need only prove
the existence of the natural extension. Here is the proof.

For a given endomorphism   of a space   we denote by M' the set of
sequences

(x0, xu ...), xk£M, (6)

such that Txfc+i = x^. For a set XcM we denote by X'n the set of sequences
(6) with xn e X and we denote by Kn the collection of X'n for all possible
measurable sets X C M. Clearly, # 0 C #i C ... and   = (}   is a field of
sets. We define a function µ'    by the formula µ' {X'n) = µ( ) and choose a basis  
in   such that T ^ G e T for any GeF. We may assume that   is complete with
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respect to  . We denote by  " the system of all sets Gn e   corresponding
to G    . Clearly,  ' is a basis in M' and the completeness of   with re 
spect to   implies that of M' with respect to  ". The function µ' is non 
negative, finitely additive and normalized; the completeness of M' with re 
spect to  ' implies that it is also countably additive on K. Therefore it
can be extended to a Lebesgue measure making M' into a Lebesgue space,
and the transformation T' defined by

T' (z0, x±, . . .) = (Tx0, x0, x^ ...  ,

is clearly an automorphism of M'.
We denote by   the partition of M' defined by the condition: sequences

(  ,  , ••·) and (xo.*i. ···) belong to the same element of   if %o = XQ.
The factor space  /'/  is canonically isomorphic to   and clearly this iso 
morphism takes T'y to T. It is obvious also that   is exhaustive under T'.

3.8. If   is an endomorphism of   and T' is an endomorphism of  ',
then the direct product      ' defined by

     ' ( ,  ') = (  ,  ' '),

is an endomorphism of the space      '. If   and  ' are automorphisms, then
     ' is also an automorphism. If   and T' are mixing of degree r, then
Tx 7" is also mixing of degree r.

§4. Entropy of a measurable partition

1.1. Let   be a measurable partition of a space   and let C^.C?,
be elements of £ of positive measure. We put

( ) (>
{  Loo if µ( — {)Ck)>0

R.

(logarithms are to the base 2). The sum in the first part of (7) can be
finite or infinite.  ( ,) is called the entropy of 5.

The entropy  ( ) of the partition of   into distinct points is some 
times called the entropy of M.

We put, as usual lg 0 = — oo, 0 lg 0 = 0 and we denote by m(x;  ) the
measure of the element of S that contains the point   e M. Obviously, (7)
can be written in the form

// (1) =   \ lg m ( ;  )  µ. (8)

PROPERTIES OP ENTROPY

i*.2. H(Z) > 0; H(Z) = 0 if and only if t = V.
Obvious.
¥ . 3 . If g< η, then H(&) < / / (η). If S, 4 η and / / (£) =  H(r\ ) < oo, then

1= η.
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PROOF. I f £ < η, then m(x; £) >  m(x; η) and, by (8),  H(£) < / / (η). I f
also

m (x; t)>m (χ; η), Η (ξ) =  #  (η) < οο,

then (8) implies that m(x; 5) = m{x;  ) and from this and the inequality
£ <   it follows that £ =  .

4.4. If ln/l, then   ( ,,)/  (I).
PROOF. If ln / , then wi (z; cn) \m(x; I) almost everywhere and so, by

(8) and the theorem on the integration of monotonic sequences,
H{ln) /H(l).

4.5. If L\l and II ( 4) < oo, then   (|n) \H ( ).
PROOF. If in \ i, t n e n "̂  (a:; In) /m(x;  ) almost everywhere, and by (8)

and the theorem on the integration of monotonic sequences,   (cn) \H ( ).
 ·.6  T/ie entropy of a measurable partition is the least upper bound

of the entropies of finite measurable coarser partitions.
PROOF. If 5 is a measurable partition and £i,£2l... is an increasing

sequence of finite measurable partitions tending to S, then   ( , ) /  ( ).
(see 1.3.)

4.7. The entropy of a measurable partition into   sets is less than
or equal to Zg n. The entropy is equal to Ig   if and only if every
element of the partition has measure l/n,

PROOF. Let pi pn be the measures of the elements of a partition £.
Since the function

  ( ) =   lg   (9).
is strictly convex on the half line   > 0, for any x^ xn and any 
non negative numbers o^ an such that

the inequality
 (  !* )<    (* ) (10)

holds; with equality if and only if all the    are equal. Putting
Putting c&i = l/n, X{ = Pi (i = 1 n), we get

n
— Σ Pi1gPi<ign,

i=l

with equality if and only if pi = ... = pn = l/n.
4.8. For any measurable partitions 5 and  \,

#(  ) <#( ) + # ( ). (11)

1/  ( ,) <    am/  /( ) < co, then equality holds if and only if 5 and   are
independent.

PROOF. If H(£) = oo or #  ) = oo, the inequality is trivial. Let
//(£) < oo and H(r\) < oo, and let pi, qj and rij be the measures of the
elements of 5,  , and 5   so that

Σ ra =  Ρ;, Σ  ̂ =   τ,·.
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We define   by (9), fix j and rewrite (10) with  .{ = pi and %i = rij/pi.
Clearly   a ixi   qj and (10) gives

Summing over j we get (11). Equality occurs if and only if, for each fixed
j, xi does not depend on i. Summation of the equations r^j = xtpi over i shows

rijthat the last condition is equivalent to the system of equations  ,· = ,
1 Pi

that is, t and   are independent.
 .9. For any finite or infinite sequence of measurable partitions

Si,52,...

#(V&o<   #(£*)•

When the sequence is finite, this follows from 4.8; when the sequence
is infinite, it follows from 4.8 and 4.4

§5. Mean conditional entropy

5.1. If S and r\ are measurable partitions of a space M, then almost
every partition Sg,   e M/r\, (see 1.7) has a well defined entropy H(S,g).
This is a non negative measurable function on the factor space  / \, called
the conditional entropy of S with respect to  . Its integral in M/r\,
finite or infinite, is called the mean conditional entropy of £ with re 
spect to T) and is denoted by  ( / )):

H(llr\)= J  (  ) µ^. (12)
 / 

AN EQU IVALEN T D E F I N I T I O N . Let B(x) be the element of η con 
tain ing the point χ e M. We denote by m(x; S/η) the measure (in B(x)) of
the element of the par t it ion Sg(x) containing χ (see the defin it ion of
m(x; S) in 4.1.) . Then

Η (ξ/ η)=  — \  lgm (χ; ξ/η) άµ. (13)
Μ

This formula has the advantage that the domain of integration does not
depend on  .

PROOF of (13). By (8)

 

(  being an element of  ), and therefore

n (ξ/η) =  \  Η(iB)άµ =   \  ά η [ igm{χ· ιΒ)άµΒ.
Μ/η Μ/η Β
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It remains to note that lg m(x;   ) is the restriction to   of lg m(x;  / \)
(see 1.8·).

PROPERTIES OF THE MEAN CONDITIONAL ENTROPY

5.2.
Obvious.
5.3. If  <  , then //(<5 / ) = //(£/ ).
PROOF. If   is an element of  , then (£ )  = £ .
5 . //(£/ ) > 0; //(£/ ) = 0 if and only if I 4  .
Follows from 4.2. For, 2 <   is equivalent to the collection of equa 

tions 5  =    (  e  / ).
5.5. If   4 £', iften //( / ) < //( '/ ). If 14, I' and

H(S,/T\) = ml'/ ) < co,  /ien £  = £' .
Follows from 4.3. For    = 5'  is equivalent to the collection of

equations <5  =   (  e  / ).
5.6. For any measurable partitions S,  , and  

1/ H(£,/C) < co and //( / ) < co, then equality holds if and only if £ and  
are independent with respect to   (see 1.7.)·

For according to 4.8,

H(lci\c)<H(tc) + H{x\c), C^Mll, (14)

and to get the required inequality it is sufficient to integrate (14) over
Jlf/ . The second part of the theorem is a consequence to the second part of
Theorem 4. 8.

5.7. If \n /\, then for any measurable partition  

For by 4.4,

Η ((In)B) /  Η (lB), B£Mlr\ ,
and we need only in tegrate t h is over Μ/η.

5.8. If E n \ j? , then for any measurable partition η such that
Η&ι/η) < co,

H(lJr\ )\H(llr\ ).
For by 4. 5,

Η((ξη)Β)\Η(1Β), Β 6 Μ/η,
and we need only integrate this over  / .

5.9. For any measurable partitions S,   and  ,

PROOF. If  =  , the formula becomes

H(li\) = H(l) + H(r\/l). (15)
We consider this case first.
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If the union of the sets of measure 0 in either £ or   is a set of
positive measure, then (15) is obvious (both sides are equal to oo). We
assume that £ and   are finite or countable and let AuA2t... and B1,B2l...
be the elements of these partitions. We put pj = µ(4 ), qj = V (Bj),
rij = µ( { f|By). Prom the conditions   { ; · = Pi,   ^ · = qry it follows that

~  ' ' • " ' Pi Pi
i, 3 i i j

and t h is is (15).
Now we take the general case. From what we have proved, we know that

  (ICT\C) =   (lc) + H (  /lc), C    / ,

and so

 /   /   / 

The left hand side is equal to H(8,r\ / Q; the fir st term on the righ t is
H(B/ O, and i t remains to show that

= //( /  ). (16)
 / 

But this follows from (13) according to which

H{r\cllc)= 
c

Μ

and from the t r an si t ivi t y of the canonical system of measures (see 1.7), by
which lg n(x; r\c/ S£) is the rest r ic t ion to C of the function
lg m(x; η/ SC) (see 1.8).

5.10. For any measurable partitions 5, T\ , and ζ,

# (ξ/ ζ). (17)
If Η(5,/ζ) < co, equality holds if and only if S, and r\  are independent rela 
tive to ζ.

In particular, for any two measurable partitions £  and η

and if H(Z) < co, equality holds if and only if £ and r\ are independent.
The proof will be given in 5.12.
5.11. If T]n /   and 5 is a measurable partition such that

£ < co, then

PfiOOF OF 5.10 AND 5.11. First we show that if \\n / r\ and £ is a
finite measurable partition,  (£,/ \ )  > 77(< / ); next we prove 5.10, and
finally 5.11.
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Let Ai 4, be the elements of S, and let pn and   be the projec 
tions of   onto the factor spaces M/r\n and M/r\. By 1.9

V Pn ( ) (4   Pn (*))  > µ   (X) {At    

in mean square, hence in measure. Since

(i = 1, ..., m )

H (̂ pn <*)) = —   µ  

  (   (3C)) = — 2 µ  

t   p n (x)) lg µ    ( ) {At fl p n

    ( )) lg µ ( > (At     (*)),

we have

in measure and

Consequently

max (

 µ
  

= ^ ( / ).
 

Now we prove Theorem 5.10. If H(Z/Q = oo, then (17) is obvious. If
//( /  < co, Theorem 5.10 is an obvious consequence of Theorem 5.6 and
Theorem 5.9. We consider the case H(S,/Q < oo, //( / ) = oo.

If £ is a finite partition, we find an increasing sequence of finite
measurable partitions   , 2, ·.. converging to   and we write

#( /   )<#(|/ ), (18)

when we go to the limit, we obtain (17) on the basis of the special case
of 5.11 already proved. Equality holds if and only if equality holds in all
the inequalities (18), that is, if and only if t and  π are independent
with respect to   for all n, or if and only if S and   are independent with
respect to C.

If 5 is infinite, we find an increasing sequence of finite measurable
partitions £i,S2 converging to £ and write //(£ /  ) < H(£n/C).
Proceeding to the limit we obtain (17) on the basis of Theorem 5.7. If
//(5/   = //(S/O then, by Theorem 5.9,

 =      (      ) >   ( / )     ( /   ) =   (  / ).

Therefore equality holds in (17) if and only if equality holds in all the
inequalities (18), that is, if and only if B,n and   are independent with
respect to  . for all n, or, if and only if S, and   are independent with
respect to  .

We prove Theorem 5.11 in the general case. Let S be an arbitrary measur 
able partition. By what has already been proved, it is sufficient to estab 
lish that for any positive   there exists a finite measurable partition
Si < B, such that for   = 1,2,...,

(19)
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Let Si be a finite measurable partition coarser than £,, satisfying (19)
for   = 1 (see 5.7). By Theorems 5.9 and 5.10,

  ( /  )     (ljnn) =   (|/|   ) <   ( /|   ) =   ( / 4)     ( ,/   <  .

5.13. If   \  , i/ien 7/ ( /  ) / # ( / ).
For a finite partition <5 the proof repeats the appropriate part of the

proof of Theorem 5.11. Let £ be an arbitrary measurable partition and I a
number less than H(B,/r\). If £i is a finite measurable partition coarser
than 5 such that #(£ / ) > I (see 5.7), then #(  /  ) /  (Ijy)), and for
sufficiently large  

5.I1 . For any measurable partition T\ and any finite or infinite
sequence of measurable partitions Si,52,...,

For by t.9

and we need only integrate this over M/r\.

§6. Spaces of partitions

6.1. We denote by   the set of measurable partitions with finite en 
tropy and for S and   in   we put

Since

  ( / ) <   (  / ) =   ( / ) +   ( /  ) <   ( / ) +   ( / )

and, similarly,

we have
  ( ,  )< ( ,  ) +  ( ,  )·

It is clear also that p(S,  ) =  ( ,  ),  (£,  ) > 0 and p(S,  ) = 0 if
and only if 5 =  . Thus, if the elements of   are regarded as classes of
equal mod 0 measurable partitions, then   is a metric in Z.

In this metric   is a complete separable space.
To prove separability we take a sequence of finite measurable parti 

tions £i,£2,... such that 5 n /  . The set of all partitions coarser than
any B,n is countable and, by Proposition 6. 3 below, it is dense in Z.

Let us prove that   is complete, that is, let us show that any funda 
mental sequence 5i,£2, ... converges in Z. It is sufficient to consider the
case P(£n, <2n +p) < 2"

n (p > 0); for from any fundamental sequence we can
select a subsequence satisfying this condition and a fundamental sequence
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that contains a convergent subsequence is convergent. We put
OO OO

and show that £ e   and p(£, £n)  > 0. According to 5.9, for I >  

Summing over I we get

OO ° °  / _ 1 OO

ft= n+ i l—n+i h~n Z= n+ 1

and since
oo

we have

On the other hand, by 5.13,

/ / (U l) =  limtf(£n/ V Ik),
Ζ +αο ft=;

and so, for sufficien t ly large Z,

Η (Ul) < Η (ln/ \ J lh) + 2 n<H (lnlh) + 2'\
h= l

I f I > n, then Η(Ζη/Ζι) < ρ(£ η, Sj) < 2~" and we get

Η {l)< Η (10 +  Η (ξ/ξ4) < / /  (ξ,) 4  1 < oo,

ρ (ξ, ξη) =  Η (ΙΙΙη) +  / /  (ξη/ξ) < 2 ( η  2 > .

6.2. 77ie set of finite partitions is dense in Z.
For if 5 e   and Si,S2, ... is a sequence of finite partitions such

that ln / I, then

  (in,  ) = #( /  ) »#( / ) =  .

6.3. Lei <Si,£2. ··· be   sequence of measurable partitions. If
then the set of partitions £ e   such that £ < £„ /or    least one   is
dense in Z.

It is sufficient to prove that for any finite partition r\ e   and any
positive   there exists an   and a £ e   such that £ < £ n and p(£,  ) <  .

Let Ci, ..., C m be the elements of  . As    /" , we have
3K (In) /"$&{%)• Consequently, for any positive  ' there exists an n and
£n sets C[, ..., Cn i such that p{Cit Cj) <  ' (i = 1 m  1 ) . We denote
by £ the partition of   into sets Dt Dm defined by the formulae
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Dl = C'v Dl= C'i~\} C  (i = 2, ...,m l),

m l
Z ) m = M   U C'j.

3 = 1

Clearly, £ < £„ and

  (S,  ) =   µ (C() lg µ (C,) + 2 µ  ;) lg µ ( ),)  
  

 2   µ(^ ^)1?µ(^   Dj).
i, 3 = 1

These formulae show that p(£,  ) depends continuously on Ci, ..., C^.i
(see 1.1) and is zero for C[ = Cit .... C'm_1 = (?„,_!. Therefore, if  ' is
sufficiently small, then p(£,  ) <  .

6.it. If \n /  , then the set of partitions in   coarser than some £ n

is dense in the set of all partitions in   coarser than £.
This theorem reduced to Theorem 6.3 (of which it is a generalization)

after factoring   by S.
6.5. The function H(£) is continuous on Z; the function H(S,/T\) is con 

tinuous on      . Moreover, for any three partitions £, T\,   in Z,

|//( / ) //( / )|< ( ,  ),
 //( / ) //( / ) |<   ( ,  ).

In fact,

  ( / )     ( / ) <   (  / )     ( / ) =   ( /  ) < # ( / ),
// ( / )     ( / ) < // (  / )   // ( /  ) =   ( / ).

6.6. J/ J4 is an everywhere dense set in   and S,   are measurable
partitions such that

H{al\) = H{alr\) (20)

/or any   6 A, then £ =  .
PROOF. If (20) holds for any   e 4, then by Theorem 6.5 it is true for

every a e Z, and then by Theorem 5.7, it is true for every measurable a.
Putting a = £ first and then   =  , we see that £ <:   and   < £.

6.7. The set Z± of all measurable partitions also has a natural
topology. This can be described in many equivalent forms; here is one of
them.

We denote by Ω the class of subsets of Z± each one of which is defined
by finitely many inequalities of the form |//(ot/£)   H(a/£0) I <  , where
£o e Zj, <x e Z, and   is a positive number. Clearly the sets of Ω cover
Zlt and if the intersection of two sets of Ω contains a partition £i, then
this intersection contains a set of Ω that contains £i. Consequently Ω is
a basis of a topology in Zim

This is a Hausdorff topology. For if £ 0 4 £i, then by 6.6, there exists
a partition a e   such that H(a/£Q) 4 /f(a/£i); putting
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  = ~\H(a/S,0)   H(a/Zi)\ we see that the neighbourhoods of £ 0 and Si de 

fined by
|   (all)     ( /  ) I < 6, \H ( / )     ( / ,) | <  

do not intersect.
Prom Theorem 6.5 it follows that the identity transformation from   to

Z ± is continuous and, from Theorem 5.11, that   is dense in Zx. Thus, any
set dense in   is dense in Zx and so Zx is separable. It can be shown that
it has a metric in which it is complete.

§7. Fundamental Lemmas

7.I. Let   be an endomorphism and £ a measurable partition of the
space M. We put

h(TA) = H(HT il ). (21)

If £ is an invariant partition, then £ = £ and the formula simplifies
to h(T, £) =    /' '  ). It is also clear that h(T,  ) =  ( ,  ) for every
measurable partition £ so that the function h(T, £) attains all its values
on the set of invariant partitions.

The properties of h(T, £) will be studied in the next section. This
section contains subsidiary material. We use the following notation:

ο
Simpler notation: £".

7.2. If η< £, t/ ien

ff (ξη/Γ "η ) =  "fl # (ξ/ 71"1 (η Ε*)). (22)
fe—0

In particular,
H(lnIT~nl ) = nh(T, I).

PROOF. Since £fe =    "1^"1, we have

Η (lkIT \ ) =  Ji (Γ ΐξ^ ι/Γ^η ) +  Η (ξ/ rV7^ξ* ΐ)

(see 5.9). As Γ is an endomorphism and η < £,

and so
5  (ξΛ/Γ Λη ) =  Η (S^/ T t* 1 Υ) +  / /  (ξ/2 ι (η ξ* ΐ)).

(22) is derived from this equation by an obvious induction.
7.3. If   < I and H(S,/T ^ ) < oo, then

(23)
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PROOF. Since ln /   , we have  "   /    and

  ( /  1 (    )) \   (    ^  ) =   ( ,  ). (24)

(23) follows from (22), (24) and the standard theorem on arithmetic means.
7 . If I e Z, then

~H&n)\h(T,l). (25)

This is a special case of the preceding theorem: put   = v.
7.5. If £ «   and //( / "^') < oo, then

PROOF. Let δ be a positive number. Since

±  Η (ΓΙΤ  V) < ^ Η {Γ!Τ ηΙ~) = h (Τ, ξ) (see 7.2) and since by Theorem 7.3

— Η(x\ nIT nl ) \h(T, η), i t is sufficient to prove that the inequality

 H{lnlT ny\  )>h{T, ξ) —δ holds for a ll η for which

— H(r\ nIT nl )<_h(T, η) +  δ. This is clear from the chain of relations:

1 Η (Γ/ Γ V) = ̂ H WIT nTV)H (ηΙΓΤ ηψ) >Η (Γ/ ΓV) ^ H WITTV)

>^H (ηη/Γ ηξ )   δ  1 Η {τ\ ηΙΙηΤ ηΙ~) =

= \Η (lnIT nt)   δ =  h (Τ, Ι)   δ.

7.6. If £, η, ζ are measurable partitions such that 5< η and
# (ηζ/ Τ1τΠ < oo, then

Η {ΙΙΤ \   Τ ηζ ) /  Η (ξ/Γ ΐη ). (26)

The proof depends on the formula

Η { 
ηΙΤ η (Τζ ) ) =  2 / /  (η/ Γ ΐη  .^ζ ) , (27)

which is true for all measurable partitions   and   and can be derived by
induction from the equation
 {     \ ·     ) =

^ ' V V · Τ~ηζ ) + Η (η " 1 / !1 "^ "1 ^ · Γ *η  •  Γ"ηζ ) =
=  Η {r\ IT \   T {n+^h\  ) + H (rf 'lT ^ ^ T ^ ).

I f Ε =  η, then (26) is a consequence of (27) and of Theorem 7.5. For
the sequence {Η(τ\ /Τ~1Τ)~·Τ~ηζ~)\  is monotonic and therefore converges, and
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by (27), the theorem on arithmetic means and Theorem 7.5, its limit is

/rV).
In the general case

  ( /  V· T % ) =   ( /    ·  "   )     ( /  ^   ·  "   ).

The first term on the right, according to what we have just proved, has
the limit //( / ^  ); the second term does not exceed  ( \/£.  1 ) ).
Consequently

lim   ( /      ·  ~  ~) >   ( / ^  )   # ( / . 2>    ) = # ( /     ),

and the opposite inequality is obvious.
7.7. 1/   is on automorphism and S,   are measurable partitions such

that H(E.r\/T 1Z~) < oo, then

h(T,   )  ( \  )=# ( /      )· (28)
The proof depends on the formula

#( "/  ·     )= § #( /     .2*  ), (29)
ft=0

which holds for any measurable partitions B, and   and is derived by induc 
tion from the equation

  ( "/   ·  'V) =   (T {h l\ll  •   \~) +   ( ^/ "^"^") =

= // ( / "'̂   ·  ^ ") +   ( * 1/^^"1^ )· (30)

(28) follows from (29) and Theorem 7.5. For

4  [  (  

 

   ~  (    ))   /  ( »/    (    ))] =

\   (  / "  "       ) ^(  /  7'
 ). (31)

By Theorem 7.5 the left hand side of this equation converges to the left 
hand side of (28). By (29), the theorem on arithmetic means and the fact
that

  {T\IT \  • Tn\ ) \   ( /     .   )

the right hand side of (31) converges to the right hand side of (28).

§8. Properties of the function h{T, I)

8.1. h(T, B.) < H(Z). In particular, if 5 € Z, then h(T, B.) < oo.
This follows directly from the definition of h(T, 5,) and Theorem 5.10.
8.2. h(T,   ) < h(T, Z) + h(T,  ). If I" and    are independent, then

equality holds.
PROOF. By Theorem 5.9,

  (  /   | ·  V) =        .  \ ) +   ( / ".  ^  ),
and by Theorem 5.10

    )· (32)
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It remains to note that if   and T\~ are independent, then equality holds
in the inequalities (32).

8.3. If n> 1, then h(T, Z) < h(T, Zn)
For since (Zn)~ =   , we have

  (^  '1 (ln)') = # (  /  1  ) > 7/ (IIT 1^).

8.4. ft(T>\  £") =  nh(T, Z).
PROOF. S in c e (Ζψ)γη = Z~T, we h ave

and it remains to apply Theorem 7. 2.
8.5. 1/   is an automorphism and   €  , then hiT'1, £) = h(T, 5).
This follows from Theorem 7.4 and the obvious relation Z^.i = Tn"1Z^·
NOTE. The condition   e   is necessary. If, for example, the partition

  is invariant under T, then hCT1, Z) = H(Z/Tg) = 0, but there exists
automorphisms for which h(T, Z) is not identically equal to zero.

8.6. The function h(T, Z) is continuous on   (in Z). Moreover, for any
  e  ,   e Z,

\h(T,  )  ( , £)|< ( ,  ). (33)

PflOOF. Since

  (  ) +   ( "/ ) = # (  V ) = # ( ") +   ( '7 "),
we have

  ( ")   // (  ) =   ( ' /  )     ( "/  ),
and

| // ( ")     ( ") | < // ( "/|")     ( / ")· (34)
But

//( /  )< 2] //(  '· / ?')< 2   (T hllT hi\) = nII ( / ) (35)

and similarly,
//( "/ ")<«//( / ). (36)

From (34) (36) it follows that |//( ")   #(£n) | < np(S,  ). Dividing by  
and taking the limit as n ̂  co, we obtain (33).

8.7. If Z<   and H(T)/T 1Z~) < co, ihen

 (7\  )< ( ,  ).

In particular, / (  S) is monotonic on Z.
PROOF. Since   4  , we have

But by Theorem 7.2 the right hand side is equal to h(T,  ) and by
Theorem 7.5 the limit of the left hand side (as n  » oo) is h(T, Z).

NOTE. On the set of all measurable partitions the function h(T, Z) is
not monotonic, in general, For example, if   is an automorphism, then
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clearly h(T,  ) = 0, but as has already been said, there exists an auto 
morphism for which h(T,  ) is not identically zero.

8.8. If £<  " and   e Z, then

h(T, l)<h{T,  ). (37)

PROOF. Since  "1 /  ", the set of partitions coarser then the parti 
tions  "1 is dense in the set of measurable partitions coarser than  "
(see Theorem 6.4). Therefore it is sufficient to prove (37) for the case
t,4  "1 for some m. But in this case Bn 4 (r\m)n = r]m + n 1 and

h (T, I) = lim      (ln) < lim ~   ( ™+   ) = h ( ,  ).

8.9. If   is an automorphism and S,4   ,   e  , then h(T, S) < h(T,  ).
The proof is similar to the preceding one. Since   "''  "' ~   " /   , it

is sufficient to consider the case 5 <  "1.  ™'1   for some m. In this case
B,n4 ( \* 

    ) )  =      2» + " 2 a n d

  ( ,  ) = lim i  // ( ) < lim  1  // ( !»'+» 2) = /, (j,  ).

8. 10. If t e.   and T\ is a partition fixed with respect to an endo 
morphism T, then

h(T, li\)=h{T,  ).

PROOF. First we assume that   e   and write down (31) again. Since a
fixed partition is completely invariant, the right hand side of this equa 
tion is zero; the left hand side by Theorem 7. 5 converges to
h(T, B,r\) — h(T , £). Consequently, h(T,   ) = h(T, I).

If   is an arbitrary fixed partition, then there exists a sequence
 1   2 , ... in   such that    /  , and, as any partition coarser than a
fixed partition is fixed, h(T, Z/r)n) = h(T, 5). Since   and    are com 
pletely invariant,

h ( , 1  ) =     ^   ^ ), h ( , 1 ) =   (1/   1! ),

and by applying Theorem 5.11 we see that h(T, S,r\n)  > h(T, S,r\). Consequently,
h(T, lr\) = h(T, Is).

8. I I. If <5 £ Ζ anci T\  is a partition fixed under T, then

h(T,l)=^h (TB, lB) άµν (38)
Μ/η

where Tg is the component of the endomorphism   in the element   of T\.
PROOF. Since

h (TB, lB) =   (IB

(see 5.1) and since the function under the integral sign is the restriction
to   of lg m(x; 5/r\ T'1S,~), we have
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h (T B, ξΒ) φ η — — \  άµη \  lg τη (χ; \ ΒΙΤΒ'<
Μ/η Μ/η Β

=  _ ^ lg m (ζ; ξ/ηΓ^ξ") φ =  / /  (ξ/ ηΓ"1! ), (39)
Λί

The right hand side is equal to h(T,   )) = h(T, E) (see 8.10).

§9. Entropy of an endomorphism

For an arbitrary endomorphism   of   vie put

(T, ξ), (40)

where the upper bound is taken over all measurable partitions or (what by
7.I, gives the same result) over all invariant partitions. h(T) is called
the entropy of the endomorphism T. It is a non negative number or +oo.

The right hand side of (40) does not change if the upper bound is
taken only over   or even only over the set of finite measurable partitions.

PROOF. It is sufficient to show that for any measurable   and any
positive number I < h(T, E) there exists a finite measurable partition  \
such that h(T,  ) > I.

Let Ei,E2, ··• be a sequence of finite measurable partitions such that
L· / |. Since En <: E, we have

h (T, y =   ajr ^n) >   (UT ^ ).

The right hand side of this inequality converges to H(E/T~1S, ) = h(T, £).
Consequently h(T, £n) > I for sufficiently large   and we can put   = tn.

9.2. If S is a factor endomorphism. of an endomorphism T, then
h(S) 4 h(T).

PROOF. For h(T) is the least upper bound of the function h(T, 5) on the
set of all measurable partitions and h(S) is the least upper bound of the
same function on the set of measurable partitions coarser than   for which
5 =   .

9.3. For any endomorphism   and any   > 0, hCP1) = nh(T). If   is an
automorphism, then hCT1) = h(T).

PROOF. By 8.3 and 9.1, /i(P, 5) < hCP1, £") < hCP1) for any measurable
partition t. The least upper bound of the left hand side (over S) is equal
to MV1) and hence this is also the least upper bound of /i(T", £") over 5.
But according to 8.1, hCP1, Zn) = nh(T, £) and so
sup hCP1, £") =   sup h(T, E) = nh(T). The second part of the theorem, con 
cerning automorphisms, follows from Theorem 8.5.

9. . If   £   is a generator for an endomorphism   or a two sided
generator for an automorphism (see 3.5), then h(T, E) = h(T).

This follows from Theorems 8.8 and 8.9.
9.5. If EitEz, ... is a sequence of partitions in   such that |n /*  ,

then h(T,   ) /h(T).
PROOF. Let I be an arbitrary number less than h(T). We look far a

partition   e   such that h(T, E) > I and for an   e Z, and an   such that
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  •£ £„ and p(S,  ) < h(T, S)     (see 6.3). According to 8.6,
h(T, £)   h(T,  ) < p(£,  ), and hence h(T. En) > h(T,  ) > I. Thus, if
I < h(T), there exists an   such that h(T, S.n) > 1. Since h(T, £„) < h(T)
and the sequence h(T,  ,!), h(T, £ 2 ), ... is increasing, we see that
h(T, y /h(T).

9.6. If Tln/T (see 3.6), then h(Tla) /h(T).
PROOF. If  ^/ , then there exist \ e Z such that    < S n and

r\n / s. The relation h(Ti)/h(T) follows from the inequalities
h(T, r\n) <     ) 4 h(T) and Theorem 9.5.

9.7. For any two endomorphisms S and T,

h(SxT) = h(S) + h(T) (41)

(see 3.8).
PROOF. Let X and   be the spaces in which S and   act, and let

  ,   ,   ,    be the trivial and the point partitions of these spaces.
Also, let £i,£2, ... be a sequence of partitions in X such that    /    
and  1   2 , .... a sequence of partitions in   such that T]U / *   . It is
clear that the partitions £„   Vy and v^      are independent and that
{In X vy) (vx    \ ) =     « / 6      . Therefore

h(SxT,        ) = h (S    ,      Vy) + h (S    ,        ) = h {S, ln) + h ( ,   )

(see 8.2). (41) follows from this equation and Theorem 9.5.
9.8. If a partition T\ is fixed under an endomorphism T, then

h(T) =
 ? 

where Tg is the component of   in the element   of  .
PROOF. Let 5i,S2. ··· be a sequence in   such \n / z. According to

Theorem 8.11,

h (T, ln)= J h (TBl (ln)B)  µ , (42)
  '/ 

and according to Theorem 9.6,

h {T, \n) / h (T), h (TB, (ln)B) / h (TB). (43)

The required equation follows from (42), (43), and the theorem on the
integration of monotonic sequences.

9.9. The entropy of an endomorphism is equal to the entropy of its
natural extension.

This follows from Theorem 9.6: if   is exhaustive under the automorphism
T, then       1  , and the factor endomorphisms are isomorphic to   .

9.10. In the simplest cases the entropy of an endomorphism can be
computed directly.

If   is the identity automorphism, then every measurable partition is
completely invariant so that h(T, B,) is identically zero and h(T) = 0.

If   is a periodic automorphism, then TP is the identity automorphism
for some   and since h(T) = h(TP)/p (see 9.3), h(T) = 0.
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If   is a Bernoulli automorphism or endomorphism, with a space of
states X, then h(T) is equal to the entropy of X.

PROOF. Let B, be the generator defined in 3.6. As X is isomorphic to the
factor space M/B, its entropy is equal to H(B). So we have to prove that
h(T) = H{t).

If H(B) < oo, then by Theorem 9.4 h(T) = h(T,  ), and the independence
of   and T iB~ gives

h (7\  )   //"( /  '  ) ==//(£).

Therefore, in this case, h(T) = H(B).
If //(£) = oo, then there are partitions coarser than   having

arbitrarily large finite entropy and, clearly, for one of these, say r\, the
factor endomorphism     is isomorphic to a Bernoulli endomorphism with
space of states isomorphic to M/r\. Consequently, if H(B) = oo, then   has
factor endomorphisms with arbitrarily large entropy and so h(T) = co
(see 9.2).

§10. The existence of generations

10.I. If an automorphism   has a two sided generator   e   then by
9.1 and 8.1, h(T) = h(T, B) < H(B). In particular, an automorphism having
a two sided generator in Z, has finite entropy.

Another necessary condition for the existence of a two sided generator
when   has continuous measure is that the automorphism must be aperiodic.
This condition is necessary for the existence of a countable two sided
generator; for if an automorphism   is periodic on a set A and the parti 
tion   is finite or countable, then the partition    induces in A only a
finite or countable partition.

Now we turn to endomorphisms. If an endomorphism   has a generator with
finite entropy, then by 9.4 and 8.1,

h{T)  ^h(T,  )<  .

Furthermore, the existence of a finite or countable generator clearly im 
plies that the inverse image of points (that is, the elements of the
partition  ^1 ) is finite or countable, and if the measure on   is con 
tinuous, that   is aperiodic.

The main results of this section are the converses of these propositions
(see 10.7, 10.11 and 10.13). As we shall see, the greatest difficulty is
the existence of generators with finite entropy. The existence of a finite
or countable generator, for an aperiodic endomorphism with a finite or
countable inverse image of points, is easily proved (see 10.13) and does
not involve entropy theory. However, it is an important fact; it implies,
for example, that every aperiodic automorphism (to within isomorphism)
generates a stationary process with a countable number of states (discrete
time).

The theorem on the existence of a two sided generator in   for an
aperiodic automorphism with finite entropy (see 10.7) is of historical as
well as factual interest. The fact of the matter is that the original
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entropy characteristic of an automorphism T, which was proposed by
Kolmogorov [14] and denoted by him as /ii(T), was defined as h(T, £,) where
£ is a two sided generator with finite entropy, provided that such a
generator exists, and as oo otherwise. Since this did not explain for what
automorphisms such generators do or do not exist, Sinai [30] proposed to
change Kolmogorov's invariant to the now generally used entropy h(T).
Theorem 10.7 shows that, for aperiodic automorphisms h(T) = hx(T),

There are unsolved problems connected with generators. For example,
what automorphisms have finite two sided generators? or m term generators?

LEMMAS ON PARTITIONS

10.2. For any two measurable partitions 0i and   such that <X >   and
 ( / ) < oo, there exists a partition   £   such that   =   . Further,   can
be chosen so as to satisfy the inequalities

//(Y)<//( / ) ; 3   7/( / ).

PROOF. It is sufficient to consider the case a =  , because the general
case can be reduced to this by factoring   by a. Since  ( / ) < oo, the con 
ditional measures µ#,   e  / , are discrete, and so there exist a measurable
partition   of   and a numbering CltC2, ... of its elements such that
   =•   and

µ (    )>µ ( 2[} )>... (44)

(see I.10). We denote the numbers \iB(Cn f]  ) by mn(B) and

µ (Cn) = \ µ B (Cn    )  µ  by mn, respectively. (44) implies that

mn(B) £ 1/n. Therefore  lg mn(B) >, lg   and

^ Yi (45)
Jf/     

oo

We take any real number s > 1 and put pn = n'
s/C(s), where C(s) =   n's.

Since   pn = l, for (X{ = pi and %i = mi/pi, the inequality (10) in ̂ .7

holds (with  ( ) =   lg  ), that is, we have
cc

 
Consequently,

oo oo

Η (y) =  — Σ mn lg ?«„ < — 2 wn lg p n =
1 1

oo oo

=  >] ™n [lg ζ (s)  f s lg re] =  lg ζ (s) +  s 2 /«„ lg ra < lg ζ (s) +  stf (ε/β) (46)

(see (45)) and so //( ) < oo.
This proves our first assertion. To prove the second we only need (46)
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and the rough estimate lg ζ(ε) < —?—

which follows from the estimate ζ (s) < 1  j  y t~" dt =  1  j  (s—I)"1)
_   

and put s = 1 + (//( / )) 2.
10.3. For any two measurable partitions 0i and   such that 0  >       

//( / ) < 1, there exists a measurable partition   such that   =    one?

//( ) < 4 

///( / ).
This follows from the preceding proposition if //( / ) < 1, then

//( / ) <  ///( / ).
10.4. For a partition   of a space  / and a set   C M, we denote by

  f|   the partition of   into sets /I f) B, where A is an element of a, and
the set M\B. Clearly,   f]B<   , where   is the partition with the
elements   and M\B. Thus, if   e   and   is measurable, then a f]   e Z.

If a e Z, then for any positive   there exists a positive   such that
H(a f|  ) <   for any set   with µ(5) <  .

PROOF. Let A1,A2, ... be an enumeration of the elements of   and let
m be sufficiently large so that

  [ µ^^µ^  ^  (47)

and that µ( ^) < e" for k > m. We take   sufficiently small so that
—mt lg t < 6j. and  lg(l — t) <    for 0 < f <   and we assume that
\i(B) <  . Then the m th partial sum of the series in

// (a fl  ) = — µ (  \  ) lg µ ( / \  ) + 2 [   µ (    ̂ ) lg µ ( 4ft   #)],
is less than   , and the same applies to the remainder of the sum, which is
majorized by (47), and to the number  \i(M\B) lg \i(M \B). Consequently.
H(a (}B) <  .

GENERATORS WITH FINITE ENTROPY

10.5. If   is an aperiodic automorphism with finite entropy then,
for any two partitions O, £ e   and any positive   there exists a partition
  e   such that r\T > g r and  ( \/ ~) < h(T)   h(T,  ) +  .

PROOF. Let   be sufficiently large so that firstly,
 (  )/    h(T,  ) <  1 =  /3, where   =  £, and secondly
 t lg t   (1   t) lg (1   t) < 6j if 0 < t < 1/n. Let   be sufficiently
small so that //(£ f]  ) <  1 for any set   with µ(£) <   (see 10.H) and let
C be a measurable set such that the sets

C, TC, ..., T" lC (48)
are pairwise disjoin t and the complement D of th eir union has measure less
than λ (see 3.3). I f γ is the par t it ion of Μ in to the set s (48) and D, then

Σ V (τ» Π TuClan [\  T"C)   Σ Iff (τ" Π T"C)   Η (σ" Π T"C)\  =

=     / /  (τηγ)   Η (σ"γ) +  / /  (σ" [\D)~H (τη Π £>).
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Therefore one term of the sum on the left hand side does not exceed the
right hand side divided by   and this term can be taken to be the term
given by k = 0, because C can be replaced by any of the sets T*C. Since

  (   )     (   ) =   (  /   ) <   ( '7 ") =   ( ")   // ( ").

#(    >) #( " #)<0,
and

1 // ( ") < h ( ,  ) +  , < h ( )  f  ,, |   ( ") >   ( ,  ),

this gives the estimate   (   [1 Clan [\C)<.h{T)  h ( ,  )  f Oj. But
 " f| C <  " 0, where  0 is the partition of   into the sets C and Jlf\C,
and since µ(  < 1/n, we have

Η (Yo) =    µ (C) lg µ (C)   (1   µ (C)) lg (1   µ (Q) < δ,.
Therefore
Η (ξ" Π C/σ") < Η ((τ" Π C) γο/σ71) < Η (τη Π C/ an

Yo)  f //  (γ0) <
< Η (τη Π C/ a" Π C)  f o t < Α (Γ)   Α (7, σ) +  2δ, .

We put η =  (£ n Π C ) ( S Π ̂ ) · Since fl(£ Π β ) < δ ι . w« have

   ( / ") <   (     C/ ") + // (|    ) < A (7
1)     ( ,  ) +  ,

and all that remains is to verify that T\T > &T  T nis follows from the re 
lations

  < EY = (I n £>) V (  n 7*0 = (  n D)
 ny rk (T hi n e x

ft=O ft=O

10.6. We denote by    the set of two sided generators in   for an
automorphism T, and by  ^ the set of partitions in   for which
h(T, £,) = h(T). Since the function h(T, £,) is continuous on Z, the set   
is closed in   and therefore is a complete metric space. By 9.4, Bf c   .

   is   Gg in   .
PROOF. We take a sequence otlfa2, ... in   such that an /  , and we

denote by   ( ,q, r) the set of partitions £ e  > for which

#(ap/ V  » )< .
h= — r 1

This set is open in Tj, and

^  =     [}BT(p,q, r).
V Q r

10.7. 1/ an automorphism   is aperiodic and has finite entropy, then
it has a two sided generator with finite entropy. Moreover, in this case
Tf\Bf is a set of the first category in   .

By 10.6 it is sufficient to show that if   is aperiodic and h(T) < oo,
then    is non empty and deilse in  7.

I prove a little more: if 0 <   < 4 and S, e   is a partition such that

h(T) h(T,  )< ^ ,

then there exists a partition S,' e    for which p(S, £') <  .
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Let So,Si, ... be a sequence in   such that

U=l ln/e, h{T) h{T,lk)< 

We construct partitions    , 2, ... such that

(see 10.5) and then partitions Ci,C2,
and //(Q.) <  /2* (see 10.3). Clearly,
Therefore

62

such that (S,k i)f]k
= (Zk ir\k)T>

33

and since

  ( ,   V CO     (V  *) <   # ( *) <  ,
1 1 11>J

we can put t' =   \J  ^.
 

10.8. The entropy of an aperiodic automorphism is equal to the
greatest lower bound of the entropies of the two sided generators.

This theorem requires proof only when h(T) < co, and then it is a con 
sequence of Theorems 10.7 and 10.5; in the latter we have to take S to be
a two sided generator and   to be the trivial partition v.

10.9. If the partition   is exhaustive under an aperiodic automorphism
  with finite entropy, then   has a two sided generator OL with finite en 
tropy satisfying   <  .

PROOF. Let S be any two sided generator with finite entropy, let
Si,S2, ... be a sequence in Z, and rti,n2, ... an increasing sequence of
positive integers such that

From the last inequality it follows that:

and so there exist partitions   , 2.
< 2~k (see 10.3). We put

· such that
+   =

a n d

,^ T %    

Since Si < T "1 ^ an d η έ <

/ / (α) < / / (SO +  Σ  H(r\ k) <

implies that

lklk +  1 < Tnk + ^ , we have α < ζ. Since

+  l, we have a e Z. F in a lly, Zkr\ k > S,k+i

i V
1

> V h,
1

  (Si V η Α) Γ
1

(V ift)r,
1
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and since for any  

we have

  ( / V lh)   0, V Ik > I aT > lT    .
1 1

10.10. Let   be an automorphism with finite entropy and   be an in 
variant partition with h(T, 0) = h(T). If S, is a two sided generator with
finite entropy such that ST 1C =  , then 5, =  .

By 6.3 and 6.6 it is sufficient to prove that

// ( / ")  //( / ) (49)

for any measurable partition   satisfying   < T"S for some n. But by 8 ,
HCPiC/Q = nh(T,   = nh(T), and by 8.H  and 9.1, H(TnS,~/£') = nh(T,Z) = nh(T).
Moreover, from ST 1?; =   it follows (by induction) that  "  =  , "5", and
hence  /( » /  = 11(7*5,'/Q. This proves (49) for   =  "5". If   < PS",
then

// ( / ") =   (Tal lf)     (   ~/   ) <   ( '   )     ( "  /  ) =, // ( / ),

the converse inequality is obvious.
10.11. If an endomorphism   is aperioduc and h(T,  ) = h(T) < co, then

  has a generator with finite entropy. More generally, if the factor endo 
morphism    of an endomorphism   is aperiodic and h(T,  ) = h(T ) < co, then
there exists a partition 5 €   such that 5 =  .

PROOF. We may restrict ourselves to the case when   is an automorphism
and   is an exhaustive partition. For, the endomorphism   can be replaced
by the natural extension of the factor endomorphism    (see 3.7).

Let   be a two sided generator in   satisfying   <   (see 10.9) and  
be a partition in   such that   "1^ =   (see 10.2). We put £ =   . This is
a two sided generator with finite entropy, and clearly ST"X^=  . By 10.10,
  = C.

COUNTABLE GENERATORS

10.12. We denote by m(S) the greatest measure of the elements of the
measurable partition 5.

Let   be an aperiodic endomorphism and     measurable partition such
that   ~1  =  . If   is finite or countable, then for finite measurable
partition OL and any positive   there exists a finite measurable partition
  such that  "  " >   and m(Y) > 1    .

PROOF. By 3.3 there exists a set A and a positive integer   such that

Since   is finite or countable,    is at most countable, and so there exists

a set   such that [X(B) > 1     and in which 0" induces a finite partition
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(  ) . Let Bs

lt ..., D
s

rs be the elements of the partition induced by $
s, with

s 4  n, in the set   f] T^*~1'>A, and let af be the partition induced in B\
by a. The endomorphism T5"1 is a one to one transformation on the B\ in A
and hence carries <t\ to a well defined partition of some part of A. To
this partition we add, as new elements, the remaining part of A and the
set M\A, denoting the resulting finite measurable partition of   by  *,
and we put

Y = (V V  ;)(  ( \ )).
s —1 i=l

Clearly,  " " >   and m(y) = µ( \ ) > 1    .
10.13. 1/ an endomorphism   is aperiodic and the inverse images of

points are at most countable (mod 0), then   has a finite or countable
generator. In particular, every aperiodic automorphism has a finite or
countable generator.

PROOF. Let   be a finite or countable measurable partition such that
  "1  =   (see I.10),  ^, ^, ... finite measurable partitions with product
 , and   ,  , ··· finite measurable partitions such that   yn > ctn and

m(Yn) > 1   2
n (see 10.12). We put    \/ yk,  =   . If Cn is an element

 
of    with measure m(Yn), then each of the sets

Of

C'n —   Ch

is the sum of finitely many elements of  , and since

µ(£;)>1    2~ =1 —2~ <   1 ) ,
ft=n

the sets C'n cover  / (mod 0). Therefore   is finite or countable, and so S
is finite or countable, Finally,

OO OO

H "=  V ?>~yk> \J ak = t.
ft =  l i

§11. Automorphisms with zero entropy

11.1. An endomorphism has zero entropy if and only if every invariant
partition is completely invariant, that is, every factor endomorphism is an
automorphism. In particular, every endomorphism with zero entropy is an
automorphism.

PROOF. If a partition   is invariant under an endomorphism   of zero
entropy, then

 ( / ~  ) = } ( ,  )< ( )= ,

and so T~1C= C Conversely, if every invariant partition is completely in 
variant, then for any invariant partition  

h(T,  ) =

and therefore h(T) = 0.
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11.2. The following statements are equivalent for automorphisms:
A. The entropy is zero.
B. The only exhaustive partition is  .
C. Every two sided generator is a generator.
The equivalence of   and C is obvious. The implication A  »   is con 

tained in Proposition 11.1. The converse implication    > A requires addi 
tional techniques and will be established in 12.6.

11.3. An automorphism has zero entropy if and only if it has a
generator with finite entropy.

PROOF. If   is an automorphism with zero entropy, then by 10.7,   has
a two sided generator with finite entropy, and by 11.2 it is a generator.

Conversely, if   is an automorphism with a generator £ e Z, then

h (T) = h (T, l) = H (l/T T) =   (l/T H) =   ( / ) = 0.
11.1. The generators of an automorphism with zero entropy form an

everywhere dense G$ in Z.
This follows from 10.6 and 10.7, because for an automorphism with zero

entropy  7· = Z.
11.5. Among all the factor automorphisms with zero entropy of an

arbitrary endomorphism   there is a maximal one  π. In other words, every
endomorphism   has a completely invariant partition U = TC(T) such that
h(Tn) = 0 and if  (  ) = 0, then C < π.

PROOF. We take Ti to be the product of all completely invariant parti 
tions   for which / (  ) = 0 and show that h^) = 0. Let   be the set of
partitions £ e   with h(T, 8.) = 0 and <5i,<52, ... be a dense sequence in IL

We put   = V h, andn= V h.lf Zen, then  ( / \) < //(£/£„) < p(£, £„)
1 1

for any n, and since p(S, £„) takes arbitrarily small values, H(S,/r\) = 0.
Thus, if S e  , then 5 <  , and so   coincides with the product of all
partitions in  . But, clearly, this product is   Consequently, x\n /  
and by Theorem 9. 5 the equation   π) = 0 will be proved if we show that
h(T, r\n) = 0 for   = 1,2, ... This follows from the equations h(T, t\d = 0
and Theorem 8.2.

11.6. The simplest examples of automorphisms with zero entropy   the
identity automorphism and periodic automorphisms   were mentioned in 9.10.
As we shall see in ll.t, all automorphisms with discrete or singular
spectrum and all automorphisms with a spectrum of finite multiplicity have
zero entropy. There is another curious class of automorphisms with zero
entropy, which is not discussed in these lectures. This is the class of
automorphisms with quasi discrete spectrum studied by L.M. Abramov [4].

For Lebesgue spaces with continuous measure, automorphisms with zero
entropy form an everywhere dense G% in the space of automorphisms. For de 
tails see [23].

§12. The theory of invariant partitions

12.1. If   is an automorphism and   is an exhaustive partition, then

/\ " >π( ) (see 11.5).
0



Lectures on the entropy theory 37

oo

PROOF. We put       =  0. It is sufficient to prove that if  < π( )

and  \ e Z, then r\ <   . For this it is sufficient to prove that
=   ( / 0) (50)

for every partition 5 e   that is coarser than one of the partitions
for since     /  , the set of partitions coarser than the partitions  ™ ,
is dense in   (see 6.3), and hence (50) implies that  ,0 \  =    (see 6.6).

We prove (50). For every positive integer  

  ( / 0) >   (1/    ) >   WT "IT*ZOT\T) (51)

(where     = V  1~ '  ; s e e 3.t). As the partitions  0 and  ^ are completely
fc=0

invariant, for every positive integer n we have

and
// ( /  "       ) = (1/  

  (   )     
    ( ?)».

This enables us to apply Theorem 7.6, with TP in place of T, to the right 
hand side of (51). The result is:

// ( /  '  » ·&,·%) = # &T PITP •  0).

Since ξ<Γ ' "ζ, we have T~"ITKO \ζο· Therefore Η{ΙΙΤ~νΙτνζ0) / # ( ξ / ζ 0 ) ,
and (50) follows from (51).

12.2. If the partition ζ is invariant under an endomorphism Τ and

η =  Λ T % then

Η(Τ,ζ) + !ι(1\ ).<Οι(Τζ). (52)

PROOF. Since every endomorphism has a natural extension (see 3.7) we
need only consider the case when   is an automorphism. Let ̂ 1,^2. ··· be
partitions in   such that    /   and 5, a partition such that 5, <  .
By 7.7,

  (  /      lT)+h ( ,  ) = h ( ,    ), (53)

and since   < ~= , |  <    =  <2 1"1 , w e s e e t n a t  ^    ^?"1?.
//(  / ~

1    )>//(  /7"~
1 ). The right hand side of the last inequality

tends to h(T,  ) as    » oo and the right hand side of (53) does not exceed
h(T^). Consequently,

from which we obtain (52).
12.3. If the partition C is invariant under an endomorphism   and

h(T,  ) = h(T ) < oo, then  ^ "  < ^ ( 7 ' ) . In particular, for any partition
I e  , °
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This is a corrollary of the preceding theorem.
12.'J. A partition C is said to be extremal with respect to an auto 

morphism   if it is exhaustive and  ~  \π( ). In other words,   is ex 
tremal if  

Τζ>ζ, \ /Τηζ = ε, ΑΤηζ = η(Τ).
ο ο

Theorems 12.1 and 12.3 show that if a partition   is exhaustive for an
automorphism   and h(T,  ) = h(T) < oo, then C is extremal. In particular,
if £ is a two sided generator with finite entropy, then 5 is an extremal
partition, (see 9 .)

12.5. Every automorphism   has an extremal partition   such that
h(T,   = h(T).

If h(T) < oo, then we can put   = t , where £ is a two sided generator
in Z. The following proof (which was found before Theorem 10.7, see [24])
works for h(T) < oo as well as for h(T) = oo.

Let Si,S2, ... be a sequence in   such that |n /  , and ni,n2, ... a
sequence of integers. We put

  = V ?'""*!*,    V r "*Eft,   =   .
ft=l ft=l

Clearly,   is an exhaustive partition. We show that if ni,n2, ... increases
sufficiently rapidly, then

// (1^/7 %)     (  /   )  > 0, (54)

and that if this condition is satisfied, then   is extremal with
h(T,   = h(T).

The relation (54) holds necessarily if we choose rci,n2, ... subject to
the following condition:

^ X y ^ · for p<zq. (55)
For then

q p l

h=0

as <7  •  0 0 (see 5. I D ,

q p i

h=0

1
2 * + 1

<  ι
< Ρ

and since // (  /7
1"1 ,) — > # (  /71"1

The choice can be made by induction: if n±, ..., nq i have been chosen,
nq can be chosen sufficiently large so that the inequalities (55) are
satisfied with p = 1, ..., g 1. This is possible by 7.6.

Since (  ) = (Sp)rand \v / z, we have
  (  / ^  ) = h ( ,   ) = h ( ,  )     > /  ( ). Since    /  , we have
//(  / '^ ) —>/  ( /7' 1 ) = //( /  1 ). Therefore (54) implies that
 ( ,   = h(T>.
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Since   is an exhaustive partition, by 12.1 f\  ~  ~^> π( ), and it re 

mains to show that (54) implies the converse inequality. If h(T) < oo, then

by 12.3 the converse inequality follows from the fact that h(T,  ) = h(T).

The following argument also works for h(T) = oo. It is sufficient to estab 

lish that any partition a e   satisfying the inequality  <; /\  ~  , also
 

satisfies the inequality OL4  K(T). Expanding h(T,  \  ) in two ways by
formula (28) we find

h (T, a)     (a/T iar (%)r)  \   (^/' 
1^     (  / ^    ).

Since {f\P)T /  ,
 we have 11 (cc/T^or ( ] ) ) ~  0, and the difference

// (  / 
 1   )—  (  /7"~

1 ^  ) does not exceed the difference in (54),
because  '1 />  <;7'~

1 . and so this also tends to zero. Consequently,
h(T, a) = o and   < n(T).

12.6. If an automorphism   does not have an exhaustive partition other
than  , then h(T) = 0.

PROOF. If   is an extremal partition for   (see 12.5), then on the one

hand   =  , and on the other hand    ~  =~π ( ). Consequently TC(T) =  

and h(T) = 0.
12.7. Examples show that there exist extremal partitions   such that

h(T,   < h(T) (see [13], [36]). It is not excluded that for any auto 
morphism   and any number c with 0 < c < h(T) there exists an extremal
partition   for which h(T,   = c. However, this generalization of
Theorem 12.5 is not proved even for a single automorphism with positive en 
tropy.

§13. Endomorphisms with completely positive entropy

13.1. We say that an endomorphism   has completely positive entropy if
each of its factor endomorphisms    with   4 V has positive entropy. An
equivalent condition: Tt(T) = V. Another equivalent condition: h(T, B,) > 0
if £ e   and I 4 v.

An endomorphism with completely positive entropy is ergodic. For if an
endomorphism   is not ergodic, then it has a fixed partition 5 4 V, and
the corresponding factor endomorphism    has zero entropy, because it is
the identity.

13.2. If the factor endomorphism    of an endomorphism   has completely
positive entropy, then   and t(T) are independent.

It is sufficient to show that, for any two partitions S,   e   such
that £ <  ,   ̂  π, the following holds:

  (1/7])=   (I) (56)

(see 5.10).
For any positive integer p,

  ( ) >   ( / ) > // ( /7' "     ). (57)
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As     it, the partition  " is completely invariant (see 11.1) and so, for
any positive integer n,

   =   (   '  ^ ) =  

This makes it possible to apply Theorem 7.6, with TP in place of T, to the
right hand side of (57). The result:   { /' '  ^') =   {    ''ljv). As π(  )
is trivial and £ <  , we have T'vl' \ v (see 12.3). Therefore
  (1/  "   ) >H(l/T pl·, ) /  (I), and (56) follows from (57).

13.3. If the set of partitions & e   for which the factor endomorphism
    has completely positive entropy is dense in Z, then the endomorphism  
has completely positive entropy.

PROOF. If the factor endomorphism     has completely positive entropy,
then H(Z/n(T)) = #(£) by Theorems 13.2 and 5.10. Consequently, the set of
partitions 5 for which this equation is true is dense in   and by
Theorem 6.6, K(T) = V.

13.4. If the factor endomorphisms    ,7
1 2, ... of an endomorphism  

have completely positive entropy and     /' , then   has completely posi 
tive entropy.

This follows from Theorems 13.3 and 6.3.
13.5. Every endomorphism Τ has a maximal factor endomorphism with com 

pletely positive entropy. (The factor endomorphism is a factor automorphism
if Τ is an automorphism.)

This follows from the preceding theorem and Zorn's Lemma.
13.6. M.S. Pinsker, who discovered Theorem 13.2, suggests that it

might be possible to decompose every ergodic automorphism into the direct
product of an automorphism with completely positive entropy and an auto 
morphism with zero entropy (see [17]). Whether this is true is not known
so far. Examples show that a maximal factor automorphism with completely
positive entropy (which exists for every automorphism by 13.5) is not
unique.

13.7. If the largest factor automorphism Ta of an endomorphism  
(see 3.5) has completely positive entropy, then   also has completely
positive entropy.

PROOF. As  π is a factor automorphism and Ta is the largest factor 
automorphism of T, we have Ti(T) < ct(T). Consequently, if Ta is an auto 
morphism with completely positive entropy, then   ( ) = V.

13.8. The natural extension of an endomorphism with completely
positive entropy is an automorphism with completely positive entropy.

This follows from Theorem 13.4: if   is an exhaustive partition under
an automorphism T, then TTn. / T, and all these factor endomorphisms are
isomorphic to   .

Another proof depends on Theorem 12.1: if   is an exhaustive partition
under an automorphism T,, then

and so the fact that the factor endomorphism    has completely positive
entropy implies that K(T) = V.



Lectures on the entropy theory 41

EXACT ENDOMORPHISMS AND /^ AUTOMORPHISMS

13.9. An endomorphism   is said to be exact if CL(T) = V, that is, if
  has no non trivial factor automorphisms. An equivalent condition:

r\T nm = M. (58)
13.7 implies that exact endomorphisms have completely positive entropy.

In particular, they are ergodic. This can be seen directly from (58): if
a set is measurable and invariant under T, then it is contained in the
algebra (58) and so has measure 0 or 1.

Bernoulli endomorphisms are examples of exact endomorphisms.
13.10. If   is an automorphism with completely positive entropy, then

by Theorem 12.5 there exists a partition   with the properties:

Τζ>ζ, {/Γζ =  6, / \Τ~ηζ = ν, (59)
0 0 V

By 12.1, every automorphism   having a partition   with these properties
has completely positive entropy.

The conditions (59) are older than the theory of invariant partitions
given in §12: they occur in Kolmogorov's work [l3], starting from the en 
tropy theory of measure preserving transformations. Starting from
probability theory arguments Kolmogorov called automorphisms having a
partition with the properties (59) quasi regular. Later they were called
Kolmogorov automorphisms or   automorphisms. Thus, we may say that the
class of automorphisms with completely positive entropy coincides with that
of K automorphisms.

As examples of /f automorphisms we can take Bernoulli automorphisms: if
5 is the generator of a Bernoulli automorphism given in 3.6, then the parti 
tion   = £f satisfies (59).

13.11. It is clear that the direct product of /f automorphisms is a K 
automorphism. As the natural extension of any endomorphism with completely
positive entropy is a /^ automorphism (see 13.8 and 13.10), the direct
product of endomorphisms with completely positive entropy has completely
positive entropy.

§11. Entropy and the spectrum

14·. I. LEMMA. // for any measurable partition C of a space   there
exists a set A of positive measure without points of positive measure and
with CA ̂   ^, then the subspace L» (M) 0 L2 ( ,  ) is infinite dimensional.

We preceed the proof with the following obvious remark: if X is an
arbitrary set of positive measure in M, then the subspace of L2(M) consist 
ing of functions equal to zero outside X can be identified with the
canonically isomorphic space L2(X) of all square integrable functions on
the subspace X of   (see I.2).and we have

' 2 ( )   L2 ( ,   ) cz L2 ( ) 0 L2 { ,  ). (60)
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First we prove the lemma under the assumption that A = M. Since   4  ,
we have L2(M,  ) y L2(M) and in L2(M) there exists a function  ^   ortho 
gonal to L2(M,  ). Let   be the set of points   e   for which  ( ) ̂  0. By
(60) (with X = B) it is sufficient to show that
dim(L2(B) QL2(B,   )) =.  oo. If dim L2(B,   ) < oo, then this is im 
plied by dim L2(B) = oo. If dim L2 ( ,   ) = oo, then L2(B, CB) contains an
infinite sequence of linearly independent orthogonal functions gi,g2. ···
and dim (L2 ( )   L2 ( ,   )) = oo because L2 (B) Q L2 ( ,   ) contains the
infinite sequence of linearly independent functions giCp, g2<P, ...

The case       reduces to A =   if by using (60) with X = A we go over
from   with partition   to A with partition CA 

11.2. 1/   is an endomorphism of a space   and   is a measurable
partition finer than ̂ C(T) other than  , then the space L2(M) Q L2(M,  )
is infinite dimensional.

By the previous theorem it is sufficient to prove that there exists a
set A c   of positive measure and without points of positive measure such
that CA ̂  EA. If this is not the case, then there exists an element of  
and hence an element of n(T) containing two points of positive measure.
Let   be the partition of   into one of these points and its complement.
Clearly,   cannot be coarser than   ( ), but the factor endomorphism     is
a periodic automorphism and so has zero entropy.

14.3. If   is an automorphism of a space M, then the operator    has
a Lebesgue spectrum of infinite multiplicity in the subspace
L2 (M) © L2 (M, n)

PROOF. Let   be an extremal partition for T. For any integer   we put

Hn = U
n

TL2 ( ,  ) 0 £/?+% ( ,  ).
Since

TIL2(M) as  —> oo,
U1L2(M^) = L2(M,T X)/

^L2(M,n) as n ^—oo,
we have

L2 (M) 0 Lz ( , π) = © Hn. (61)
n=—oo

By Proposition 14.2 applied to the factor endomorphism    the subspace
Ho is infinite dimensional. Let /i,/2, ... be a basis in Ho. (61) shows
that the functions Unfk form a basis in L2 (M) Q L2 ( , π). Thus, Uj has a
Lebesgue spectrum of infinite multiplicity in L2(M)QL2{M, π).

14. ·. C O R O L L A R I E S . An automorphism with completely positive en 
tropy has a Lebesgue spectrum of infinite multiplicity.

Automorphisms with discrete spectrum have zero entropy.
Automorphisms with singular spectrum have zero entropy.
Automorphisms with a spectrum of finite multiplicity have zero entropy.
14.5. There exist automorphisms with zero entropy having a Lebesgue

spectrum of infinite multiplicity. The first example of this kind was con 
structed in 1959 by Girsanov, but was not published. There is also an
example recently published by Newton and Parry [49].

One of the classical unsolved problems of the theory of measure preserv 
ing transformations is: what spectral properties must a unitary operator UT
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have to be adjoint to an ergodic automorphism? Theorem 14.3 reduces this
to the problem of ergodic automorphisms with zero entropy.

m.6. We turn now to endomorphisms. According to 1.6 and 2.6 the
equation ^

  (71) =    ~  
n=0

implies that

 
71=0

and that the unitary part of    is canonically isomorphic to the operator
Ufa adjoint to Ta. 14.2 implies that the defect of UT is oo only if   is
not an automorphism. Combining these facts with Theorem 14.3 we see that
the operator Uf adjoint to an arbitrary endomorphism   has the orthogonal
decomposition:

uT = uT @w = uT ®v@w,
where V is a unitary operator with a Lebesgue spectrum of infinite multi 
plicity and W is a semi unitary operator with a homogenous spectrum of
infinite multiplicity or zero. If   is an endomorphism with completely
positive entropy, then    π is the identity transformation on the one dimen 
sional space C(M). If   is an automorphism with completely positive entropy
or an exact endomorphism, then also W = 0 or V = 0. If   is an automorphism
with zero entropy, then V = W = 0.

§15. Entropy and Mixing

15.1. L E M M A . If   is an endomorphism, /o is a function in L2(M)
orthogonal to L2(M, Ti(T)) and fit .... fr are bounded functions in L2(M),
then for any sequence of complexes of non negative integers

(A?  ' ), (fc% ...,K), ..., (62)
satisfying the conditions

the following holds:

(  Uh}fi, l) >0. (63)
i=0

PROOF. We assume first that   is an automorphism and that the functions
/i fr are in L2(M,  ), where   is some extremal partition. Then the
scalar product (63) has the form (/0, g n ) , where gn is the complex con 
jugate of the product
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and since fei   k° < kl   k° for i > 1,
η η η η

gniUh
T

n~knL2(M, Q =  L 2(M , Γ"' """1 1 "^ ) . (64)
Therefore

  (/ , Sn) I = I (Pnfo, gn) | < || Pnfo \\ · || ̂ n ||,

where Pn is the projection operator onto the subspace (64), and  '  \π
implies that

1,1 1.0

so that || Pn/o || —» 0. Since the functions /i, .... fr are bounded, the
sequence of norms ||gn|| is bounded and so (/o, gn)  » 0.

In the general case Theorem 12.1 allows us to replace an endomorphism
  by its natural extension, that is, to regard it as an automorphism, and
Theorem 12.5 allows us to construct an extremal partition    for this auto 
morphism. We make a bounded approximation of flt ..., /„ by functions in the
subspace U^L2(M,   ) = L2(M,     ) for a sufficiently large   and apply
the case already treated (with the same /o and with C = TP^o). So we get
the complete result.

15.2. Every endomorphism   is mixing on any sets Ao, ... Ar independent
of the partition ^(7*).

An equivalent formulation: an endomorphism   is mixing on any bounded
functions f0, ..., fr independent of the partition Ti(T).

It is sufficient to show that for every sequence (62) satisfying the
conditions

k°n <: ki <....< kr
n, min (k3

n— # ,) —> oo,

the following holds:

(II rf"/«, 1) »   (/»!)· (65)
The proof proceeds by induction on r. For r = 0 (65) is trivial. We

assume that

(    "/«. 1) >   ( , 1). (66)
» = 1 i = l

The fact that /0 is independent of rt(T) implies that its projection on
L2(M, TC) is equal to (/0, 1). Therefore the function /  =/0   (/o, 1) is
orthogonal to L2(M, K) and by Proposition 15.1, the first term on the
right hand side of

(  Urnfh i) = (Ur
nf'o.   U%, !) + (/„, 1) ([\ uhu l)

i=0 t=l t=l

converges to zero. Combining this with (66), we obtain (65).
COROLLARY. An endomorphism with completely positive entropy is

mixing of all orders.
The converse of this theorem is not true; there exist automorphisms with

zero entropy that are mixing of all orders. In particular, Girsanov's auto 
morphism, mentioned in IM .5, has this property.
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§16. Entropy and the isomorphism problem

16.1. The first application of entropy in the theory of measure pre 
serving transformations was made by Kolmogorov in 1958 (see [l3] and [l4]).
and was concerned with the partially solved isomorphism problem, that
is, the problem of classifying automorphisms of a Lebesgue space with re 
spect to isomorphism (mod 0).

Before Kolmogorov's work on this problem there had been no progress
for quite some time. It has been known for some time that the classifica 
tion of non ergodic automorphisms reduces to the classification of the
ergodic automorphisms, that two ergodic automorphisms with discrete spectra
are isomorphic if and only if they are spectrally isomorphic and that this
is not true for automorphisms with a mixed spectrum. This last fact was
established with the help of special invariants organically connected with
the presence in the spectrum of both discrete and continuous components.
In the case of continuous spectrum the only available invariants were the
spectral ones. It was not possible to establish that spectral isomorphism
does not imply isomorphism.

This was proved by Kolmogorov with the help of entropy. As examples he
used Bernoulli automorphisms: all these, apart from the trivial case, have
Lebesgue spectra of infinite multiplicity and the entropy (or what comes
to the same thing in this case, the invariant hj,; see 10.1) can have any
positive value.

16.2. At present automorphisms with completely positive entropy are
the most interesting. This is due to their special position in both the
general theory and in applications. In the first place, there is the
isomorphism problem. We do not exclude the possibility that two automorphisms
with completely positive entropy are isomorphic if their entropies are
equal. If this were so, then every automorphism with completely positive
entropy would be isomorphic to a Bernoulli automorphism.

The problem can be restricted to Bernoulli automorphisms. This case
was first examined by Meshalkin [  ] who proved that if the spaces of
states of the Bernoulli automorphisms   and T' are finite and the probabili 
ties of all the states are powers of a single rational number, then
h(T) = h(T') implies isomorphism. For example, spaces of states with
probabilities 1/4, 1/4, 1/4, 1/4 and 1/2, 1/8, 1/8, 1/8, 1/8 produce iso 
morphic Bernoulli automorphisms. Meshalkin' s work attracted the attention
of many mathematicians; partial results have been obtained, but the com 
plete problem is still unsolved.

16.3. Sinai also studied this problem (see [32], [34]). He proposed
that one should consider a less stringent condition along with isomorphism:
he calls two automorphisms weakly isomorphic if each is the homomorphic
image of the other. Sinai' s main result: if 5 is a Bernoulli automorphism
with finite entropy not exceeding the entropy of an ergodic automorphism T,
then S is a homomorphic image of T. In particular, two Bernoulli auto 
morphisms with the same finite entropy are weakly isomorphic.

To appreciate the importance of weak isomorphism we note that two
weakly isomorphic automorphisms have both the same entropy and the same
spectral invariants. A systematic study of other invariants (contained in
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unpublished work by Yuzvinskii) shows that the situation is the same with
these. Thus, at present we cannot distinguish between isomorphism and
weak isomorphism. This applies to endomorphisms as well as to automorphisms.
In measure theory there are simpler objects for which a complete classifi 
cation exists, such as Lebesgue spaces, measurable partitions, and measur 
able functions, for which it is not difficult to show that weak isomorphism
implies isomorphism.

16.4. The following problem appears to be more promising: does there
exist a universal automorphism with completely positive entropy such that
any automorphism with completely positive entropy is a homomorphic image?
The natural candidate is the Bernoulli automorphism whose space of states
has continuous measure. We do not exclude the possibility that this candi 
date is even isomorphic to its direct product with any automorphism with
completely positive entropy.

16.5. Let us discuss the problem of isomorphism for endomorphisms.
Here we have an obvious invariant, which is trivial in the case of an
automorphism   the decreasing sequence of partitions

 ,   **, T *B, ..., (67)

considered to within isomorphism. As was shown by Vinokurov, an endo 
morphism   is not specified by this invariant, taken to within equivalence,
even in the class of exact endomorphisms with generators in Z. Whether
much has to be added to the sequence (67) for a solution of the
isomorphism problem, even for this class of endomorphisms, is not known.
Vinokurov' s proof does not contain explicitly defined new invariants.

There are entirely concrete situations in which this problem is of
interest. Suppose, for example, that   is a group endomorphism of the two 
dimensional torus with eigenvalues At and  2 and that   is a Bernoulli
endomorphism with space of states consisting of | 1 2 points of measure
l^iXsl"1. If IXil > 1 and |  | > 1, then the endomorphism   is exact and
has a finite generator, and the sequence (67) is isomorphic to the sequence
 , S^e, 5"2 , ... Are 5 and   isomorphic?

The preceding arguments call for a more intensive study of decreasing
sequences of measurable partitions. At present there exists a complete
metric classification of such sequences. The classification of certain
measurable partitions has been known for twenty years (see [20]); finite
decreasing sequences were discussed by Guseva [l2]; the difficult transi 
tion to infinite sequences was recently carried out by Vershik. Vershik' s
main result: sequences \S,kf? and {n^if are isomorphic if | n \ v and
  \   and the sequences {£*} ? and   ^!" are isomorphic for any n.

It would be interesting to clarify what conditions a sequence <5i,<52,...
must fulfill for the existence of an exact endomorphism   with
 ~   = B,n (n = 1,2,...). The first thing to do is to prove or disprove
the statement: in a space with continuous measure for any measurable parti 
tion 5 having no elements of positive measure there exists an exact endo 
morphism   with  '1  = £.

If an endomorphism is not exact, the question arises whether it can be
decomposed into the direct product of an automorphism and an exact endo 
morphism. This problem is related to Pinsker's problem (see 13.6).

Received August 20, 1966.
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APPENDIX

METRIC PROPERTIES OF ENDOMORPHISMS OF
LOCALLY COMPACT GROUPS1

S.A. YUZVINSKII

Let G be a locally compact group, µ a Haar measure on G, and   an endo 
morphism of G. Then   is a measurable transformation which can be studied
from the point of view of measure theory.

First we make stronger assumptions: the group G is compact and has a
countable topological basis, and   maps G onto G. In this case G is a
Lebesgue space and T, because of uniqueness of the Haar measure, is an
endomorphism in the measure theoretical sense.

To G there corresponds a set X of equivalence classes of irreducible
representations, and   indices the transformation U: X  » X defined for a
representation A by the formula UA(g) = A(Tg), g e G, and clearly this can
be carried over to the equivalence classes. If G is commutative, then X
becomes its character group and U the endomorphism of X adjoint to T. It
turns out that the ergodicity of an endomorphism   can be expressed in
terms of the set theoretical properties of U: an endomorphism   is ergodic
if and only if all trajectories of the transformation U, apart from that
of the identity transformation, are infinite, (see [44], [22], and [48]).

If   is ergodic then it satisfies stronger conditions in the theory of
measure preserving transformations. In [44], [22], [26] the following is
proved: an ergodic endomorphism on a commutative group has a Lebesgue
spectrum of countable multiplicity, is mixing of all degrees and has
positive entropy. All these statements result from the more general theorem:
an ergodic endomorphism has completely positive entropy, (see [28], [38]).

The following concepts play an important part in the proof of this
theorem. Let F be the direct product of the sequence { ^\ (i = 0, + 1,...)
(infinite in both directions) of copies of a compact group   with a count 
able topological basis. The automorphism R of the group F defined by
R{hi\ = }/i!|, h\ = hi+1 (hi 6 Hi), is called a Bernoulli group automorphism
with group of states H. Bernoulli group automorphisms result, for example,
from any ergodic automorphism on a connected compact group without centre
(see [38]).

An automorphism   of G is said to be densely periodic if G contains an
everywhere dense set A such that for any a e A there exists an integer  
for which V^a = a. Trivial examples of densely periodic automorphisms are
the automorphisms of finite dimensional tori and the Bernoulli group endo 
morphisms. Non trivial is the proposition: every ergodic automorphism of a
totally disconnected compact group is densely periodic. In the proof of
this statement in [38] there is a more precise description ergodic
automorphisms of a totally disconnected group: they are all skew products
of Bernoulli group automorphisms.

Another subject in the metric theory of group endomorphisms is the
calculation of their entropy. First we note the addition theorem: If   is

1 A lecture given at the Khumsan school on ergodic theory.
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a normal subgroup of G invariant under the endomorphism T, and if TQ and S
are the endomorphisms induced by   in   and G/H, then h(T) = h(S) + h(T0),
where h is the entropy (see [38]). For the proof of this theorem and the
extension of its domain of applicability we have to define the concept of
entropy for an endomorphism that is not an epimorphism. This is trivial
and is given in [38].

The calculation of the entropy of endomorphisms began almost as soon
as the concept of the entropy of an automorphism appeared (see [30]).
Computations of entropy are in the papers [3], [ ], [ ], [ ], [4 ]. The
most general result is contained in [4 ], where the entropy of an arbitrary
endomorphism   of a connected commutative finite dimensional group is cal 
culated (the basic technical difficulties for this were overcome in [ ]).
The character group of such a group is torsion free and of finite rank,
and so the automorphism U for a fixed basis in X occurs as a matrix A with
rational entries. We denote by  1( ...,    the eigenvalues of A and by s
the common denominator of the moduli of the coefficients of the character 
istic polynomial of this matrix. Then1

h(T) = logs+   log    , |. (h)

Formula (h) makes it possible to define the entropy of a group endo 
morphism without using measure theory concepts. This means that the calcu 
lation of the entropy of an endomorphism of a compact group becomes a
problem in topological algebra. If G is commutative, then the definition
of entropy becomes purely algebraic and is given as follows.

Let X be a commutative countable group and U a one to one endomorphism
of X. We define the concept of algebraic entropy ha(U) of the endomorphism
U.

a) Suppose first that A' is periodic. Then we put
OO OO

Κ (U) =  sup log ord ( V UnYI \ f UnY),
Sa n=0 n=l

where SI denotes the collection of finite subgroups of X.
b) Now we assume that   is a torsion free group. If X contains an

element xo such that for any polynomial   with integer coefficients
p(U)xo 4 0. then we put ha(U) = co.

We assume for every   e X the existence of a polynomial px with integer
coefficients such that px(U)x = 0. We enumerate the elements of X in a
sequence X1 PJC 2. ··· and denote by Xn the smallest subgroup of X containing
* ,*2· ···. *n and invariant under U. The rank of Xn is finite, and so the
endomorphism Un induced by U in Xn can be expressed with respect to a fixed
basis in Xn as a matrix An with rational entries. We denote by  ^" the
eigenvalues of An and by s ^ the common denominator of the moduli of the
coefficients of its characteristic polynomial, and we put

log |  }'( )  

1 Here and below the logarithm is to the base 2.
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The sequence \ha(Un)\ is increasing, and so the following makes sense:
ha(U)=limha(Un).

n +oo

c) Finally we consider the general case. We denote by   the periodic
part of the group X, by Uo the endomorphism induced in   by U, by V the
factor endomorphism of U in X/Y, and we put

ha(U)=ha(V)+ha{U0).
This definition gives the entropy of an endomorphism in the usual sense.

To be precise, if G is the character group of X and   is the endomorphism
of G adjoint to U, then we have h(T) = ha(U) (see [40]).

If G is non commutative, we denote by C the connected component of the
identity, by   the centre of C and by TQ, S and R the endomorphisms induced
by   in Z, G/C and C/Z. Then the following are true (see [40]):

a) h(T)=h(T0) + h(S) + h(li),

b) /j(S)= suplogord( f| T~nA\ ° [\ T~nA),
4:9[ n=l n=0

where    denotes the collection of open normal subgroups of G/C.
c) If R is the direct product of automorphisms of Lie groups, then

h(R) = 0. Otherwise h(R) = ax
Together with the algebraic definition of entropy for commutative groups

these three statements give a topological algebraic definition for the en 
tropy of a group endomorphism in the general case.

In conclusion we consider automorphisms of an arbitrary locally compact
group. In this case   does not have to preserve measure. We call on auto 
morphism   ergodic if for every measurable set A either \i(A) = 0 or
U(G\A) = 0 and weakly ergodic if for any such A we have V (A) = 0 or
U (A) = co. Clearly the conditions for   to be ergodic or weakly ergodic do
not depend on the choice of the Haar measure on G.

All automorphisms that do not preserve measure are weakly ergodic.
There exist weakly ergodic automorphisms that preserve measure. As an
example we can take the linear transformation of the real plane given by

o
and also the direct product of 5 with any group automorphism. This is not
a chance example: if a commutative group generated by a compact set, has a
measure preserving weakly ergodic automorphism, then the plane is a direct
summand of it.

The fundamental theory in the metric theory of automorphisms of non 
compact groups is: an automorphism of a commutative or connected non compact
group is not ergodic (part of this is proved in [39])1. It can be shown
that a general solution depends on a solution for a non compact totally dis 
connected group. Whether an ergodic automorphism exists for such a case is
not known.

Received November 14, 1966.

Added in proof. This theorem is also proved in the recently published papers
[52], [53], [54].
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