
VEECH: COUNTING WITH RATES

Abstract. A counting function N(T,g) can be approximated in both parameters T and g. We survey
all possible combinations of these smoothing arguments.
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1. Counting point sets in the plane - Introduction

1.1. Approximative Counting. We consider the standard left action of SL2(R) on R2\0 and let � <
G = SL2(R) be a non-uniform lattice and v 2 R2 � {0} such that �v is a discrete set in R2. � to be a
lattice means that the induced Haar measure mG/� on G/� is finite. Non-uniformity of � is equivalent
to � containing a non-trivial unipotent element. �v is discrete if and only if v is stabilized by a unipotent
subgroup �1 in �. The first example are the primitive points SL2(Z)e1 in Z2. We are concerned with
the counting problem of

(1) �v \B

for a set B ⇢ R2. Identify R2\0 = G/N and G1 = G/�1. Then G1 covers both G/� and R2\0. Define
the Siegel-Veech transform taking a function f on G/N to functions on G/�,

⇥f (g�) =
X

�2�/�1

f(g�N).

Note that g�v \ B = ⇥
B
(g�) and the classical strategy is to obtain asymptotics of 1 by an average

procedure of ⇥
B
(g�), see Section 2 DRS which we follow. We define an adjoint of ⇥f as follows: For F

on G/� we let F � on G/N by

F �(gN) =

ˆ
N/�1

F (gn�)dn.

Then

h⇥f , F iG/� =

ˆ
G1

f(gN)F (g�1)dg = hf, F �iG/N .

Suppose now that f = �t 2 L1(G/N) such that �t ! mG/N . Identifying G/N measurably with R2 we
are thus asking �t to be a Foelner sequence, say euclidean balls Bt of radius t. Let F = F" be a dirac
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2 VEECH: COUNTING WITH RATES

approximation of � 2 G/�.1 We additional assume the support of �t to be wellrounded, which for now
means

(2) ⇥�t
(g1�)  ⇥�t⇢("))

(g2�),

for any g1, g2 2 BG
" and ⇢(") ! 1 as "! 0 and that limt

mG/N (Bt)
mG/N (B⇢(")t)

! 12 as "! 0.

This allows to upgrade the weak* limit of �t ! mG/N ,

h�t, F �
" iG/N ! mG/N (F") as t ! 1

to the pointwise statement

lim
t!1

⇥�t
(�)/|�t| = 1

see Lemma 2.3 DRS. Clearly, this approach can be made qualitative if given su�cient information on
�t ! mG/N . Sarnak’s theorem on low lying horocycles reads

Theorem 1.1. For any smooth F 2 L2(G/�) and any g = kan, a = diag
�
y�1, y

�

F �(gN) = mG/�(F ) +O(S(F )y)

as y ! 0.

Let E(gN) denote the error term as function on G/N , so that

(3) h⇥�t
, F iG/� = |�t|mG/�(F ) + �t ? E

where the error term is a simple integral over R2. A careful analysis of continuity of ⇥�t
(g�) in both

variables t and g in the sense of equation 2 will allow us to count the intersection of �v in dilations of
general domains Bt = t⌦. We actually see that equation 3 is strong enough to count in any domain,
only given that h⇥�t , F iG/� is close to ⇥�t(�).

Remark 1.2. Note that Theorem 1.1 is actually somewhat overkill of what we need - decay of �g ? F �

as g ! 1 compared to �t ? F � as mG/N (Supp(�t)) ! 1. Discuss relation to [Rogers, Modified’ Siegels
formula] where it is proven that �t balls and F = ⇥� itself a Siegel transform over any pointset with
spherical density d 3, �t ? F ! mR2(F ).

1.2. Perron Formula and Sobolev Spaces. Let us introduce now the spectral view point and restrict
to K-invariant functions f so that ⇥f can be put on H/� where we consider the right action of G on
H by Mobius transformation, i.e. g.z = g�1z and identify H = K\G. The spectral theory of L2(H/K)
begins with a Perron formula

(4) ⇥f (z) =
1

2⇡i

ˆ
Re s=2

f̂(�s)E(z, s)ds

where f̂ is the Mellin transform and the classical Eisenstein series E(z, s) =
P
�2�/�1 y(��1z)s. Indeed,

the so called continuous spectrum is by definition the L2(K\G/�) closure of all functions of the form
⇥f where f are smooth and compactly supported.

The spectral theorem rests on the meromorphic continuation of E and their asymptotics for Im(s) !
1. For smooth f one is allowed to apply a Cauchy-Residue argument to move the integral to the critical
line 1

2 . Passing the point s = 1, a residue mG/�(⇥f ) appears which by Siegels formula equals mG/N (f).
It remains to show that the continuous wavepacket is neglable. This requires

Theorem 1.3. ˆ T

�T

|E(z, 1
2 + it)|2dt = O(T 2).

It is also the driving spectral bound for Theorem 1.1, and moreover, can be used to proof Weyl’s law
(of the continous spectrum) on H/�. Theorem 1.3 turns out to be a consequence of the (continuous)
spectral theorem and Bessel’s inqueality. We proof it later (13.1).

One may only use the asymptotitic behaviour for Re s > 1/2 for which the decomposition coming
from equation 4 will make sense also for (non-smooth) characteristic function Bt

and thus leads to

1Note that F �
" is a smoothening of ��/N =

P
�/�1 ��N .

2more precisely formlated with lim inf-sup
3(i.e. NT /T 2 ! d)
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an asymptotic count without any further approximation argument. One might use the final spectral
decomposition

⇥f (z) = Ress=1 E(z, s)

ˆ
⇥f (z)dz +

1

4⇡i

ˆ
Re s= 1

2

h⇥f (·), E(·, s)iE(z, s)ds

but this is only understood in the L2 sense for f not smooth, and we better again do a smoothing
argument that requires corresponding approximations as in 2 but for deformations along A only.

The spectral decomposition for general f , not just radial, allows therefore the treatment for general
shapes given that one can bound h⇥f (·), Em(·, s)i. In general, this is best approached by a decomposition
of a general function f into K-eigenvectors, where one keeps track on dependency along A, and is con-
veniently expressed in terms of Sobolev norms. See Bernstein-Reznikov for a treatment, and Venkatesh,
Einsiedler-Margulis-Venkatesh, Kelmer-Kontorovich, Sarnak-Ubis for recent uses and Flaminio-Forni for
an indepedendent and selfcontained discussion.

2. Counting using the spectral Theory of Eisenstein Series

2.1. Eisenstein series I - Veech and Counting. Standing assumption are that we count at the infinity
cusp and the SL2(R)-action on L2(G/�) is tempered. The first assumption allows us to use the dual

picture between counting g�v in BR2

(0, R) for v = e1 and �g�1i in H(R) = [�1/2, 1/2]⇥ [1/R2;1) ⇢ H
since (=g�1i)s = kgvk�2s, see (16.9) and the discussion after in Veech[Siegel measures]. The stabilizer
in � is denoted by �1. The second assumption implies lack of non-trivial poles of the Eisenstein series
in the critical strip. Let

N(g,R) = |g�v \BR|.
Let us recall more notation from Chapter 16 Veech[Siegel measures]. Define the Eisenstein series as

(5) E(z, s) =
X

�2�/�1

kg�v0k�2s

in the variable z = g�1i. With a Lebesgue-Stielties integral representation one is lead to

(6) E(z, s) =

ˆ 1

0

dN(g,R)

R2s
= 2s

ˆ 1

0

N(g,R)

R2
R1�2sdR

valid for any <(s) > 1. Veech continues to calculate the residual limit of E(z, s) at s = 1 without further
knowledge assumed on E(z, s) but using the main term count of N(g,R). Indeed, the right hand side
of equation 6 is absolute convergent using that N(g,R) = O(R2). We shall use a smooth version of
formula 6, see Theorem 2.3.

Theorem 2.1 (Veech,Siegel measures).

lim
s!1

(s� 1)E(z, s) = c(�, v)⇡

where s in the left hand side is restricted to lie in some explicit set U(�) and the right hand satisfies

N(g,R) = c(�, v)⇡R2 + o(R2)

We see that c(�, v) is the Siegel-Veech constant. Also recall the following theorem of Veech.

Theorem 2.2 (Theorem 14.11, Veech, Siegel measures). For any � 2 Cc(R2), denote by T� the map
x 7! �(x/T ).

lim
T!1

1

T
⇥T� = c(�, v)

ˆ
R2

�

where ⇥f is the Siegel-Veech transform.

Also introduce the Mellin transform of  ,

 ̂(s) =

ˆ 1

0
 (y)ys�1dy.

From the integral representation in equation 6 we see E(z,s)
2s = bN(�2s) and by Mellin-inversion

(7) N(R) =
1

2⇡i

ˆ
(c)

R�s bN(s) =
1

2⇡i

ˆ
(c)

R2s bN(�2s)2ds =
1

2⇡i

ˆ
(c)

E(z, s)

s
R2sds

for any Re c > 1 so that E(z, s) is absolute convergent.
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For f : R2 ! R, the function ⇥f (g�) =
P
�2�/�1 f(g�v0) is known as Siegel-Veech transform in

the flatsurface community. For f = B(0,R), this function is SO2(R)-invariant, and one can equivalently
write it as incomplete theta series, which takes  : R>0 ! R to

E( , z) =
X

�2�/�1

 (Im(�z))).

We note that E(z, s) = E( , z) for  = ys if we were to allow such functions.
The associated (spherical) Eisenstein series E(z, s) can be meromorphically extended to the whole

complex plain, and satisfies a functional equation (see e.g. Theorem 6.5 Iwaniec)

(8) E(z, s) = �(s)E(z, 1� s)

The incomplete theta series enjoys the following spectral decomposition Terras[Lemma 3.7.1] for
SL2(Z) and see Borel for general �. It is essentially the spectral Theorem for the continuous part
of L2(�\H) with respect to the hyperbolic Laplacien. 4

Theorem 2.3. Let  : R>0 ! R be smooth and compactly supported.

(9) E( , z) =
1

2⇡i

ˆ
Re s=c

 ̂(�s)E(z, s)ds for any c > 1.

(10) hE( , ·), E(·, s)i =  ̂(s̄� 1) + �(s̄) ̂(�s̄)

(11) E( , z) = Ress=1 E(z, s)

ˆ
E( , z)dz +

1

4⇡i

ˆ
Re s= 1

2

hE( , ·), E(·, s)iE(z, s)ds

We note that
´
E( , z)dz =  ̂(�1) and

´
Re s= 1

2
hE( , ·), E(·, s)iE(z, s)ds = 2

´
Re s= 1

2
 ̂(�s)E(z, s)ds and

all integrals are absolute convergent.

Let us explain how equation 11 implies the the following polynomial error rate in counting. Since we
wish to relate the size of the integral on the right hand side of equation 11 with smoothness of  , we shall
also include a proof of equation 9,11. The Siegel-Veech transform enjoys the same decomposition, see
the proof of Proposition 12.3. This will follow from a spectral decomposition with respect to the angular
coordinates on R2 (corresponding to the action of K = SO2(R)), and requires twisted (non-spherical)
Eisenstein series, where the twist happens precisely over the K-characters. We will introduce them in
context for counting in sectors in Section 2.2.

Theorem 2.4 (Iwaniec Proposition 7.2).ˆ T

�T

|E(g, 1
2 + it)|2dt = O(T 2).

Theorem 2.5.
N(R, g) = c(�, v)⇡R2 +O(R4/3+).

Proof. Let  U : R+ ! R smooth

 U (t) =

⇢
1, for t  1� 1/U
0, for t � 1 + 1/U

and consider also its Mellin transform.

 U (s) =

ˆ 1

0
 U (y)y

s�1dy

We shall use this to approximate N(g,R) by the incomplete Eisenstein transform of two such ��U 
(0,1]  �+U . Write NT (g) = N(g,R).

(12)
X

�1\�

��U (y(�g)
�1T�1)  NT (g) 

X

�1\�

�+U (y(�g)
�1T�1)

For �U = �±U , we have by 11 and multiplicative property of the Mellin transform
X

�1\�

�U (y(�g)
�1T�1) = Ress=1 (E(g, s) U (s)T

s) +
1

2⇡i

ˆ
( 1
2 )
E(g, s) U (s)T

s.

4...and also decide on the various definitions involving the choice of s or �s and 1
2 normalization factors
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Since the integral on the right hand side is absolute convergent, it is asymptotically O(T 1/2). We still
have to explicate the depedency on U however.

Let us start with the the following simple lemma.

Lemma 2.6.

 U (s) =

8
<

:

s�1 +O(U�1), as U ! 1
O
✓

1
|s|

⇣
U

1+|s|

⌘k◆
, as |s| ! 1

for any k > 0.

We refer to the Appendix for a proof.
For �U = �±U , by Mellin inversion and integration by parts in the Lebesque-Stieltjes sense (the right

hand site is absolutely convergent for any vertical line > 1)

X

�1\�

�U (y(�g)
�1T�1) =

1

2⇡i

ˆ
(1+)

E(g, s) U (s)T
sds.

This recovers equation 9.
We could proof therefore a form of equation 11 when applying Cauchy’s residue theorem to sthe

trip between 1/2 and 2. For this, we are reuqired to have ”reasonable” growth of the Eisenstein series,
which together with super-polynomial decay of  U from Lemma 9.2 justies the shift of contour by the
Phragmén–Lindelöf principle (we will return to this in section 5):

= Ress=1 (E(g, s) U (s)T
s) +

1

2⇡i

ˆ
( 1
2 )
E(g, s) U (s)T

sds

(13) =
1

V ol(G/�)
(T +O(T/U)) +

1

2⇡i

ˆ
( 1
2 )
E(g, s) U (s)T

sds

Let us move on to our initial goal to bound

(14)

ˆ
( 1
2 )
E(g, s) U (s)T

sds

with concrete dependence on U .
Restricting our attention to the upper half, we have (using the second formula of Lemma 9.2) that

����
ˆ 1

0
E(g, 1

2 + it) U (
1
2 + it)T

1
2+itdt

����⌧ T
1
2

ˆ 1

0
|E(g, 1

2 + it)| U↵

1 + |t|1+↵ dt.

Cauchy-Schwarz to
|E(g,

1
2+it)|

1+|t|� · 1+|t|�
1+|t|1+↵ ,

⌧ T
1
2U↵

sˆ 1

0
|E(g, 1

2 + it)|2 1

1 + |t|2� dt.

sˆ 1

0

✓
1 + |t|�

1 + |t|1+↵
◆2

dt.

The last term is finite if � � 1� ↵ < � 1
2 .

For the first term, define F (T ) =
´ T
0 |E(g, 1

2 + it)|2dt = O(T 2), thenˆ 1

0
|E(g, 1

2 + it)|2 1

1 + |t|2� dt =
F (t)

1 + |t|2�

����
1
0 �

ˆ 1

0
F (t)O(

1

1 + |t|2�+1
)

◆
dt.

The first summand is finite for � > 1, the second for 2� 2� � 1 < �1, which again reduces to � > 1. A
good choice for ↵ therefore is

↵ >
1

2
.

This leads to

(15)

ˆ
( 1
2 )
E(g, s) U (s)T

sds = O(T
1
2U

1
2+)

which should match the smoothing error T
U , i.e. T 1/2 = U3/2+ accumulating to the error term

O(T 2/3+) = O(R4/3+)

⇤
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2.2. Eisenstein series II (non-spherical) - Counting in Sectors with Erdos-Turan. This argu-
ment easily upgrades to count in sectors, if given similar asymptotics of Theorem 2.4 for the even weight
Eisenstein series

(16) Em(g, s) =
X

�2�1\�

y(�z)se (m(✓ + arg(cz + d)))

where g = n(x)a(y)k(✓), z = gi, y(z) = Im(z). We also introduce j�(g) = e ((✓ + arg(cz + d)).
Indeed, given NT (g), one obtains a measure µT on the circle by restricting to sectors in the ball of

volume T , and as such has a Fourier transform,

NT,m(g) =

ˆ
e(�m✓)µT (d✓).

which has now integral representation like that in equation 7 with E replaced by Em.

Theorem 2.7 (Marklof-Strombergssen, Kronecker on Horocycles).ˆ T

�T

|Em(g, 1
2 + it)|2dt = O((T + |m|)2).

Theorem 2.8. Let N(R, I, g) restrict the counting function to any sector I.

N(R, I, g) = c(�, v)
|I|
2
R2 +O(R8/5+).

Proof. We use again the notation N(R, I, g) = NT,I(g). By the lack of poles of Em (see discussion in
Sarnak (Horocycles) or MS), and the above argument,

X

�1\�

j�(g)
m�±U (y(�g)

�1T�1) = O(T 1/2U1/2+m)

From the m = 0 estimate,
������

X

�1\�

j�(g)
m�±U (y(�g)

�1T�1)�
X

�1\�:|y(�g)|�T�1

j�(g)
m

������
 |NT (1± 1

U )(g)�NT (g)| = O(T/U+T 1/2U1/2+).

so that the m’ths Fourier coe�cient of NT is of order

NT,m(g) =
X

�1\�:|y(�g)|�T�1

j�(g)
m = O(T/U + T 1/2U1/2+m)

Erdos-Turan,

NT,I(g) = c|I|T +O(T 2/3+ + T/M +
X

mM

1

m
|NT,m|) = c|I|T +O(T/M + (logM)T/U +MT 1/2U1/2+)

Set M = T 1/5, U = T 1/5 to get O(T 4/5+). ⇤

3. Wellroundedness, Average Counting, Horocycles

This section picks up on the unfolding formula 21 relating the Adjoint operator ⇥f to integrating over
the horocycle associated to the cusp �1 of �. If f is the characteristic function of a ball, it is supported
on A0K with A0 ⇢ A compact and increasing. This leads to an average over the pushed horocycle of a
test function, which in turn equidistribute, see Lemma 3.4.

3.1. The average counting problem. Let H = StabSL2(R)(v) , then H = gUg�1 with U = {[ 1 ⇤
0 1 ]}

and some g 2 G. Identify the orbit H� in G/� with Y = H/(H \�) and normalize the natural measure
mY to be a probability measure. Then Y defines a closed horocycle in G/� and and by a result of Dani
[?] it is known that g⇤mY equidistribute to mX as gH ! 1 in G/H. In Theorem 3.3 we will cite an
e↵ective version of this statement.

The homogeneous space G/H is identified with R2\{0} and upon normalizing mG/H to be the restric-
tion of the usual Lebesgue measure on R2, we force a normalization to mG/(�\H) for the Fubini formula
mG/(�\H) = mG/HmY to hold. We normalize mG/� to be the push forward measure of mG/(�\H). We
also put bt = gatg�1 2 B = gAg�1 and ⌫t = bt⇤mY where at = diag

�
t, t�1

�
and A = {

⇥
s 0
0 s�1

⇤
: s 2 R⇥}.

Introduce

Ft,I(g�) =
|g�v \Bt,I |
mG/H(Bt,I)

so that Ft,I(�) =
1

|I|T 2NT,I .
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If K = SO2(R) we have the Iwasawa decomposition G = KAU = KBH. Using this decomposition
we define Bt ⇢ R2 \ {0}:

Bt = K{a 2 A : kak  t}e1 = K{b 2 B : kbk  t̃}v

where k · k denotes the maximum norm and t̃ is seen to be linear in t. Then Bt agrees with the
euclidean annulus {t�1  x  t : x 2 R2}. To account for counting in sectors, we define k✓ such that
k✓e1 = (sin ✓, cos ✓)T and for any interval of angles I = [✓1, ✓2] we let K(I) = {k✓ 2 K : ✓1  ✓  ✓2}. It
will be useful to rewrite K(I) as k✓0K([�✓, ✓]) for some ✓0, ✓. We define the sector of an annulus by

Bt,I = K(I){a 2 A : kak  t}e1.

Since by assumption �v is discrete, there exists t0 such that for all t > t0,

{w 2 �v : kvk  t,](w, e2) 2 I} = �v \Bt,I .

We proceed by upgrading the last estimate to a pointwise bound. For each t, we pick �" (where " = "(t)
will be chosen later) to be a smooth function of support contained in {g 2 G : kg � ek, kg�1 � ek  "}�
satisfying mG/�(�") = 1. To prove the inequalities (17) we need to relate

´
G/� Ft,I�"dmG/� with Ft,I(�)

For this, we show e↵ective well-roundedness of the sets Bt,I .

3.2. Wellroundedness. By replacing �" by k · �" for a correctly chosen k 2 K such that Ft,I(kg�) =
|g�v\k�1Bt,I |
mG/H(Bt,I)

counts points of g�v contained in a sector that is symmetric around the y-axis. Furthermore,

we may divide I (into at most 4 subsectors) to assume that I ⇢ [�⇡/4,⇡/4]. The multiplication map
K ⇥ A ⇥ U ! G is locally bilipschitz, so that for g 2 Supp(�"), we have g = k(g)a(g)u(g) with
kk(g) � ek, ka(g) � ek, ku(g) � ek ⌧ ". In fact, we chose bilipschitz coordinates [�", "] ! K" ⇢ K,

x 7!
hp

1�x2 x

�x
p
1�x2

i
, [1 � ", 1 + "] ! A" ⇢ A, x 7!

⇥
x 0
0 1/x

⇤
and [�", "] ! U" ⇢ U , x 7! [ 1 x

0 1 ] so that

Supp(�") ⇢ K"A"U".

Lemma 3.1. If k 2 K" then kBs,[�✓,✓] ⇢ Bs,[�✓�",✓+"], and there exists a constant c > 0 so that for
all " ⌧ 1, we have that if a 2 A" then aBs,[�✓,✓] ⇢ Bs+s",[�✓�c",✓+c"], and if u 2 U" then uBs,[�✓,✓] ⇢
Bs+s",[�✓�c",✓+c"].

Proof. The claim for k 2 K" follow from the fact that K acts by rotation.
The symmetry for a 2 A" is such that a either stretches along the vertical direction, in which case

the angle is squeezed or it contracts in the vertical direction and the angle is increased. For any w 2 Bs,
kawk  kwkkae2k  (1 + ")kwk so that the latter case remains. Let w be the boundary vector of Bt,I

in the first quadrant, thus w = (t sin ✓, t cos ✓). If ✓0 denotes the angle of aw, then tan ✓0 = 1+"
1�" tan ✓ 

(1+2") tan ✓  tan(1+2")✓  tan(✓+2"). By symmetry around the y-axis, this proves the second case.
Finally, we turn to the action of u 2 U". If u = [ 1 x

0 1 ], and w = (s sin#, s cos#) for some #  ✓ (and by
symmetry we may assume that x,# � 0), then kuwk2  s2(1 + 2x sin# cos# + x2 cos2 #))  s2(1 + 3x)
and so kuwk  (1+ 2")kwk. For the new angle #0 of uw, we have that tan#0 = tan#+x  tan(#+x) 
tan(✓ + ").

⇤

Lemma 3.2. There exists a constant c2 > 0 such that for "⌧ 1, for any g 2 Supp(�"),

gBt�c2"t,[�✓+c2",✓�c2"] ⇢ Bt,I ⇢ gBt+c2"t,[�✓�c2",✓+c2"]

Proof. We iterate the previous lemma with respect to the decomposition g = k(g)a(g)u(g) to prove the
second inclusion. The first inclusion follows from the second upon multiplying with g�1 and appropriate
substitions for t and ✓. ⇤

We give notion of wellroundedness of sectors, which takes the following form. For any g an "-ball of
SL2(R)

(17) (1 +O("))hÑT�c2T",I�c2",�"i 
1

|I|T 2
NT,I(g)  (1 +O("))hÑT+c2T",I+c2",�"i

where ÑT,I(g) =
|g�v\BT,I |

|BT,I | denotes the normalized counting function and �" 2 C1
c (G/�) is supported

on an "-neighbourhood of � 2 G/� with mG/�(�"). See Section 3.1 for a proof.
We proceed with the proof inequalities (17).
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Proof of inequalities (17). For the (centered) interval I, we denote I + c2" the thickened interval [�✓ �
c2", ✓ + c2"] and by I � c2" the shrunken interval [�✓ + c2", ✓ � c2"]. By Lemma 3.2, and the fact that
mG/�(�") = 1,

mG/H(Bt�t"c2,I�c2")

mG/H(Bt,I)

ˆ
Ft�c2t",I�c2"�"dmG/�  Ft,I(�)


mG/H(Bt+c2t",I+c2")

mG/H(Bt,I)

ˆ
Ft+c2t",I+c2"�"dmG/�

We conclude

Ft,I(�) =
|I + c2"|(t+ c2t")2

|I|t2
ˆ

Ft+c2t",I+c2"�"dmG/� = (1 +O("))

ˆ
Ft+c2t",I+c2"�"dmG/�.

and a similar statement from below. ⇤

3.3. Equidistribution of Horocycles implies Counting. It remaines therefore to show equidistri-
bution of Ft as t gets large.

For the next theorem, we define a Sobolev norm Sd. Fix a basis {X1, X2, X3} of sl2(R) and put

Sd(f) =
X

degDd

kDfkL2(mG/�).

The following Theorem is phrased in terms of the height y of the horocycle when mapped to the cusp
at infinity. We recall that the measure ⌫t = bt⇤mY is supported on a closed horocycle of length t = 1/y

1
2 .

Theorem 3.3 ([Sar][Theorem 1], for K-invariant functions also [Strom04][Theorem 3..?]). There exists
constants c = cv > 0 and 1 = 1(�) > 0 such that for any f 2 C1

c (G/�)

|⌫t(f)�
1

mG/�(G/�)
mG/�(f)|  c(t�1S4(f) + t�(2�1)S0(f))

The term t�(2�1)S0(f) is absent by lack of cuspidal eigenvalues. By [Strom04], the bound c(t�1S4(f) +
t�(2�1)S0(f)) can be replaced by c�(t�1+�S2(f) + t�(2�1)+�/2S0(f)) for any � > 0.

Lemma 3.4. For any ↵ 2 C1
c (G/�)

ˆ
G/�

Ft,I↵dmG/� =
1

mG/�(G/�)
mG/�(↵) +O

⇣
t�1+�S2(↵) + t�(2�1)+�S0(↵)

⌘

with explicit and implicit constants as in the previous Theorem.

Proof. By the unfolding argument for mG/(�\H) = mG/HmY (see [?][Proof of Theorem 5.1]), we have
that for any ↵ 2 C1

c (G/�)
ˆ
G/�

Ft,I↵dmG/� =
1

mG/H(Bt,I)

ˆ
Bt,I

g⇤mY (↵)dmG/H(gH).

Recall that mG/H is normalized to be compatible with the usual Lebesgue measure on R2 and thus, in
radial coordinates, gH = w = kbsv for some k and s = kwk/kvk so that g⇤mY = k⇤⌫s.

mG/H(Bt,I)

ˆ
G/�

Ft,I↵dmG/� =

ˆ
K(I)

ˆ 1

0

✓
1

mG/�(G/�)
mG/�(k · ↵) +O

⇣
r�1+�S2(k · ↵) + r�2+1+�/2S0(k · ↵)

⌘◆
dkrdr.

As S(k · ↵) ⌧ S(↵),
ˆ
G/�

Ft,I↵dmG/� =
1

mG/�(G/�)
mG/�(↵) +O

⇣
t�1+�S2(↵) + t�2+1+�/2S0(↵)

⌘

⇤
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3.4. General Shapes. We wish to quantify a version of this theorem to obtain polynomial error bounds
for more general shapes than sectors and balls.

Theorem 3.5. For any �⌦ be the characteristic function of a bounded set ⌦ ⇢ R2 whose boundary is
piecewise smooth.

⇥T�⌦ = c(�, v)|⌦|T 2 +O⌦(T
2�)

Lemma 3.6. If su�ces to proof Theorem 3.5 for conal sets ⌦ = {t⇢(✓) : t 2 (0, 1], ✓ 2 S1} where
⇢ : S1 ! (0, 1] is a piecewise smooth function.

Proof. Consider a closed set ⌦ ⇢ R2 whose boundary is piecewise smooth and may assume that ⌦ is
contained in the unit ball. We may restrict to a connected component of ⌦ and may assume it to be
simply connected, since else we first count in each bounded connected component of ⌦c. In fact, we shall
do a finer geometrically reduction as such: We can do a decomposition into finitely many sectorial shells
of ⌦ to assume that there are two funtions ⇢1, ⇢2 globally defined in polar coordinates giving top and
bottom boundary - either closing up or connected with a radial part of a sector. Thus if we can count
under each curve T⇢1, T⇢2, we can collect a count of ⌦ by inclusion exclusion. It is important to realize
that this decomposition is independent of T , that is, each component has the same asymptotics growth
in T . ⇤

We clearly have to extend Lemma 3.2.

Lemma 3.7. It su�ces in Lemma 3.6 to assume that ⇢ is smooth. More precisely, there exists smooth
⇢±� such that for ⌦±

� = {t⇢±� (✓) : t 2 (0, 1], ✓ 2 S1}
⌦�
� ⇢ ⌦ ⇢ ⌦+

�

and mR2(⌦+
� \ ⌦�

� ) = O⇢(�), S⇤(⇢
±
� ) = O⇢(��1/2).

Proof. This is the first smoothing argument. Each discontinuity can be replaced by changing ⇢ on a
�-neighborhood, with k⇢0k1 = O(��1) on this neighborhood. ⇤

We just write ⇢� = ⇢±� .

Lemma 3.8. There exists ⇢"� with ⌦"� = {t⇢"�(✓) : t 2 (0, 1], ✓ 2 S1} such that for any g 2 BG
" ,

gT⌦ ⇢ T⌦"�

and mR2(⌦"� \ ⌦�) = O⇢("��1).

Proof. Consider the Cartan decomposition G = KAK and the associated local di↵eomorphism (in
particular bilipschitz) S0 ⇥ R�0 ⇥ S0 ! G given by k(✓1)a(s)k(✓2) = g (notation as before Lemma 3.1)
where ✓1, ✓2, s� 1 = O("). In G/N -coordinates �T⌦ = g(�T (✓, t)) becomes k(✓)a(⇢(✓))a(t)N , t  T, ✓ 2
S1. Applying the "-deformation

g�T⌦(✓, t) = k(✓1)a(s)k(✓ + ✓2)a(⇢(✓))a(t)N

To find the parameter ✓0, t0 for which k(✓0)a(⇢(✓)t0)N = a(s)k(✓ + ✓2)a(⇢(✓))a(t)N we have to esti-
mate a(s)ka(s)�1 = kan in Iwasawa coordinates. Bilipschitzness of the local coordinate system, and
polynomiality of the Adjoint action on sl2(R) we get

a(s)ka(s)�1 = kk"a"n"

for k", a", n" 2 BG
" . N is normal in AN so that

g�T⌦(✓, t) = k(✓1 + ✓ + ✓2 +O("))a(⇢(✓)t(s+O("))N = k(✓)k"a"a(⇢(✓))a(t)N

for some (new) k", a" 2 BG
" and define ✓" such that k(✓") = k(✓)k", and t" such that a(t") = a(⇢(✓"))�1a(⇢(✓))a"

g�T⌦(✓, t) = k(✓")a(⇢(✓"))a(t)a(t")N

We note that t" = t"(✓) clearly depends on ✓ but also on ⇢�, more precisely

t" = 1 +O⇢(")

if ✓ is max(", �)-away from the discontinuities of ⇢, and

t" = 1 +O⇢(�
�1")

on max(", �)-neighborhoods around the discontinuities of ⇢. Thus take ⇢"�(✓) = ⇢�(✓)t"(✓). ⇤
The other inequality for wellroundedness can either be obtained by redoing the steps in the proof, or

better, by applying the Lemma for ⇢ replaced by ⇢�� .
Theorem 3.5 now follows from equation 3, see Lemma 3.4 for details.



10 VEECH: COUNTING WITH RATES

4. A combination of Section 2 and 3: Bounding directly with the
Maass-Selberg-Relations

Since

�mEm(g, s) = s(1� s)Em(g, s),

for the Laplace operator �m given in Iwasawa coordinates by �m = �y2
⇣

d2

dx2 + d2

dy2

⌘
+ imy d

dx we find

by integration by parts,

hEm(s), "i =
1

s(1� s)
h�mEm(s), "i =

1

s(1� s)
hEm(s),�m "i.(18)

Thus, repeated application of � will show that the expression hEm(s), "i has super polynomial decay
in the variable s, which comes as a replacement for Lemma 9.2. In fact, we can once more argue by
convexity to upgrade for non-integer values. See Lemma 4.2 below.

As described in the introduction, one has the following spectral decomposition of the fourier coe�cients
of the counting function,

(19) NT,m(g) =
1

2⇡

ˆ
(c)

Em(g, s)

s
R2sds

which we shall integrate against  ". Since the support of  " is compact, we may use truncated Eisenstein
series ẼY

n when necessary. We note that Sarnak obtains

Lemma 4.1 (Sarnak, Horocycles,(Lemma 2.10 and formulas (2.9)).

kẼY
n k2 ⌧ log nkẼY k2

so that Theorem 13.2 also bounds the weighted Eisenstein series.5 Indeed, this may be done by
considering the analogous Maass-Selberg relations. Combining with formula 18

(20) |hEm(s), "i| |s|�1 ⌧ 1

|s|3 "
�d logm↵(t)1/2

where "�d essentially bounds the Sobolev norm k� "k2 and
´ T
�T

↵(t)dt = O(T 2) by Theorem 13.2.6

Interchanging integrals in the expression hEm(s), "i where we apply formula 19, we shift contour 7

to s = 1
2 + it, pick up the possible residue �m0 ress=1hEm(s), "i (the main term) and the error term

1

2⇡

ˆ
(1/2)

|hEm(s), "i|
s

R2sds = R"�d logm

ˆ 1

�1

↵(t)1/2

1 + |t|3 dt.

The the last integral is absolute convergent by the same argument as in the proof of Lemma 2.8.
Note that it would su�ce to have 1

|s|3 replaced by 1
|s|3/2 for which one again argues by convexity, and

resulting in better error terms.

Lemma 4.2. Bound on

|hEm(s), "i| 
1

|s|k
for k 2 (1, 3) with better "-dependence.

Proof. Like the proof of Lemma 9.2 ⇤

5. Selberg’s work on Eisenstein Series

Selberg [Indian, Goettingen] proved the following theorem about the Eisenstein series E(z, s).

Theorem 5.1. Let � have a single cusp at 1.
A: The function E(z, s) is absolutely convergent for Re s > 1 and is is uniformly bounded on

Re s � 2.
M: There is a meromorphic extension to all of C.
1/2: E is holomorphic on Re s = 1/2.
E: E(z, s) = �(s)E(z, 1� s) for a meromorphic function �(s).
�: �(s) is holomorpohic and unitary on Re(s) = 1/2.

!: !(t) = 1� �0

� (1/2 + it) is even, � 1 and
´ T
T
!(t)dt ⌧� T 2.

5This bound is much better than the one from MS, I think one can probably also improve on Theorem 2.7.
6Maybe Sarnak forget’s a squareroot saving here
7again by the polynomial bound on average argument, but here bounds are provided for all of Re s � 1/2
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P: All poles of E in Re s > 1/2 lie in (1/2, 1] and all are simple.
1: There is always a pole at s = 1 with residue equal to c�.
G1: E(z, s) ⌧� O(!(t)1/2e3|t|�2⇡y) for s away from poles and Re s 2 [ 12 , 3/2]

G1/2:
´ T
T
|E(z, 1/2 + it)|2dt ⌧� T 2 + Ty.

For the first facts see Theorem 7.3 [Selberg, Goettingen, p653] and Theorem 11.8 [Hej2, p130]. [G1]
is (8.17) in [Selberg, Goettingen, p658] and Theorem 12.9 (d) [Hej2, p164]. [1/2] is (3) in [Selberg,
Goettingen, p627] and Prop 7.2 in [Iwaniec, p101].

As remarked before, for c > 1,

⇥ (z) =
1

2⇡i

ˆ
(c)
 (�s)E(z, s)ds.

Assuming E is ”sensible” at 1 we can shift contours to Re s = 1/2, see discussion in [Hej2, p82 top].
Indeed, Lemma 6.1 shows that the average behaviour given by [G1], G[1/2] su�ces.

6. The Contour Shift argument

We need a slightly di↵erent version of Proposition 9.3 and Lemma 9.4.

Lemma 6.1. Let � be smooth and compactly supported. Let F (s) be meromorphic on C and is holo-
morphic on the right hand side of (a) including (a) itself, except for finitely many poles {sj}, say in
R[a, b] = {s :2 C : Re(s) 2 (a, b)}. Assume further that F is bounded on (b) [ R[b,1] and uniformly in

the real parameter, satisfies
´ T
�T

|F (a+ it)|2dt = O(T 2), and F (s) = O(!(t)e3t) for s = � + it 2 R[a, b]

with
´ T
�T

!(t)2 = O(T 2) for a positive even function !(t) � 1. Then

1

2⇡i

ˆ
(b)

F (s) (s)ds =
X

sj

Ressj (F ) (sj) +
1

2⇡i

ˆ
(a)

F (s) (s)ds

Proof. We only have to modify the two preceding proofs. The left hand side exists because  (s) is rapidly
convergent and F (s) is bounded. By partial integration and Cauchy-Schwarz (as in the argument below
equation 14), we also see that 1

2⇡i

´
(b) F (s) (s)ds is absolutely convergent. Let C be the maximum of

the implicit constants of the growth assumption on F,!ˆ T

�T

|F (a+ it)|2dt  CT 2,

ˆ T

�T

!(t)2  CT 2, |F (s)|  C!(t)e3t, |F (s)|  C (Re(s) � b).

Introduce the auxilary function

H(s) =

ˆ 1

0
d⌧

ˆ b

a

d⇠F (s+ ⇠ + i⌧), s = � + it

which is holomorphic for |t| � T0 (only depending on the location of poles of F ), or more generally

H⇢(s) =

ˆ
[a,b]+i[0,1]

F (s+ w)⇢(w)dw

for ⇢ : [a, b] + i[0, 1] ! BC
1 (0). Holomorphicity follows e.g. by interchange of integral and @z. We shall

obtain a uniform among such, ⇢, so that one can consider or fixed s, ⇢(w) the sign function of F (s+w).
Therefore, it su�ces to prove |H⇢(s)| ⌧C |s| to concludeˆ

[a,b]+i[0,1]
|F (s+ w)|dw ⌧ |s|

and therefore ˆ
[a,b]

|F (sn + x+ yi)|dx ⌧ |sn|, w = x+ iy

for infinitely many sn ! 1. We will write H = H⇢. We have

|H(s)| 
ˆ
[a,b]+i[0,1]

|F (s+ z)⇢|dz⌧ ⌧b�a

 ˆ
[a,b]+i[0,1]

|F (s+ z)|2dz
! 1

2

=
�
[a,b]+i[t,t+1]|F (� + z)|2dz

� 1
2

The growth rate of H(s) falls into three cases to the regions (a), (b) and R[a, b], (implicit constants only
depending on C)

|H(s)| ⌧ t s 2 (a) [ (b)

|H(s)| ⌧ te3t s 2 R[a, b].
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Introduce " > 0. There exists ✓0 2 [0, 2⇡] and T" � T0, such that for any

s = � + it = rei✓s 2 R[a, b] \ {Im(s) � T"},
we have |✓s � ✓0|  ". Using this, we may also find m 2 N>1 such that

cosm✓s < �1 + "

(after possibly increasing T"). " will be fixed from now on. Introduce � > 0. There exists T� > T" such
that for any s 2 R[a, b] \ {Im(s) � T�},

|H(s)e�s
m | = |H(s)e�r

m cosm✓s | ⌧ te3t+�r
m cosm✓s  1

since r > t, and cosm✓s uniformly close to �1. Dividing by s, we see that H(s)s�1e�s
m

is now uniformly
bounded on the boundary of R[a, b] \ {T"  Im(s)  T�}, and by the maximum modulus principle also
in its interior, and thus

|H(s)| ⌧ |se�sm |
for any s 2 ((a) [ (b) [R[a, b]) \ {T"  Im(s)  T�}. Letting T� ! 1, |HT (s)| ⌧ |se�sm | for any
T"  Im(s) in the strip. Since � was arbitrary, we may take � ! 0 to see that

|H(s)| ⌧ t

for any t > T". This argument may be repeated for the negative strip.
Thus we have shown that there exists a sequence �±n lines, connecting (a) with (b) at above Im s = tn

(resp. Im s < �tn ) for tn ! 1 for which
´
�n

|F (s)| ⌧ tn.

We can deduce absolute convergence of 1
2⇡i

´
(c)0 F (s) (s)ds for (c)0 stands for the line c possible with

a neighbourhood around the pole removed.
We also can justify the countour shift: Exploiting super-polynomial decay of  , we can use Cauchy’s

residue theorem to show that the integral of  (s)F (s) along the domain enclosed by �±n and (a) [ (b)
equals 2⇡i

P
sj
Ressj (F ) (sj) with horizontal contribution

´
�n
 (s)F (s)ds vanishing as n ! 1. We note

that we already know absolute convergence of the integrals 1
2⇡i

´
(a)�(b) F (s) (s)ds, so that it su�ces to

take the limit under some subsequence. ⇤
6.1. Weighted Eisenstein series. A similar theorem holds for En(z, s), in particular [G1/2] is proven
in Marklof-Strombergssen [Kronecker] with explicit dependency in n. We are lacking of [G1] however.

7. Fourier decomposition

In view of the spectral theorem, Theorem 2.3, a post-contour shift is already provided to us. However,
it remains to identify the Fourier coe�cient explicitely. By [Hej2, p291, p317, p773 Note 5]

f(z) =
X

dn'n(z) +

ˆ 1

0
g(t)E(z,

1

2
+ it)dt

for f 2 C2 \ L2,�f 2 L2 uniformly and absolutely on compacta where

g(t) =
1

2⇡

ˆ
H/�

f(z)E(z,
1

2
+ it)dµ(z).

Thus we wish to know that for f = ⇥ ,  : G/N ! R compactly supported, g(t) =  ( 12 + it). We note
that unfolding, ˆ

H/�
⇥ (z)E(z,

1

2
+ it)dµ(z) =

ˆ
H/�1

 (z)E(z,
1

2
+ it)dµ(z)

ˆ
A

 (a · i)
ˆ
N/(�1\N)

E(an · i, 1
2
+ it)dnda

Now reference to the Fourier decomposition of E has to be made, Thm 11.6 (F) [Hej, p297], see also line
(2.53) [Strom]:

E(z,
1

2
+ it) = y

1
2+it + �(

1

2
+ it)y

1
2�it +

X

n 6=0

cn(t)y
1
2Kit(2⇡|n|y)e(nx)

so that

g(t) =

ˆ
A

 (a(y) · i)
✓
y

1
2+it + �(

1

2
+ it)y

1
2�it

◆
dy

y

which is a sum of  (s) and �(s) (s). Since � is unitary (Theorem 5.1,[�]) (alternatively, use Theo-
rem 5.1,[E]), we can bound both terms with Theorem 5.1,[G1/2].
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Derivations of the spectral decomposition following this argument in the opposite direction are sketched
in [Ku, p86], [I, p102].

7.1. Weighted Eisenstein series. Since we know properties [E],[1/2] for Ek by works of Marklof-
Strombergssen, the argument of Section 2.2 that uses equation 7.1.1 is therefore justified.

7.1.1. Counting in smooth Star shaped domains. Thus let �⌦ : R2 ! R the characteristic function of
a star shaped domain ⌦ whose smooth boundary is given in polar coordinates (⇢(✓), ✓). Let  ±

U (t) 2
C1

c (0,1) be a smooth bumb function as employed in Theorem 2.8, the domain T⌦ is approximated by
{T ±

U (t)⇢(✓)k(✓)e1 : t 2 (0, 1], ✓ 2 S1},and we let �±T⌦,U defined by

�±T⌦,U (t, ✓) =  ±
U (t/T )⇢(✓)k(✓)e1

and similar for �T⌦. For star shaped domains we have the easy inclusion

⇥��
T⌦,U

(�)  ⇥�T⌦(�)  ⇥�+
T⌦,U

(�)

and it su�ces to estimate ⇥�±
T⌦,U

(�). We drop the superscript ±.

We have the following Fourier decomposition, where ⇢(m) are the Fourier decomposition of ⇢ along
K,

⇥�T⌦,U
(g�) = cmR2(�T⌦,U ) +

X

m

 ˆ
Re(s)= 1

2

c "(s)Em(s, g)ds

!
⇢(m)e(m✓).

The extension of equation 15 reads
�����

ˆ
Re(s)= 1

2

c U (s)Em(s, g)ds

����� = O(T 1/2U1/2+m)

so that we wish to bound
P
⇢(m)m, which we immediately see to be O(S2(⇢)) and

⇥�T⌦,U
(g�) = cmR2(�T⌦,U ) +O(T 1/2U1/2+).

8. Outlook: Eisenstein-Veech series

Let x be a translation surface and V (x) the set of holonomy vectors of saddle connections on x.
Let  : R+ ! R be of compact support (and may considered as radial function on R). Its Siegel-

Veech transform is b (x) =
P

v2V (x)  (kvk)). We define the Eisenstein-Veech transform by E(x, s) =P
v2V (x) kvk�s. Using Veech’s proof using Lebesque-Stieltjes integration, and Masur’s upper bound this

object is well defined for Re s > 1 (see discussion around equation 7).

Proposition 8.1 (Veech). For any x the series E(x, s) is absolutely convergent for Re s > 1.

To each x there is an hyperbolic plane Hx attached via the SL2(R)-action and forgetting the north
direction of the translation surface. In particular, we can study the Laplacian on Hx. By a theorem of
Athreya-Masur-Cheung, the Siegel-Veech transform is in L2 for compactly supported functions.

Question. Is it possible to define a regularized series E(x, s) which becomes square integrable? Is it
possible to then adapt Veech’s argument to calculate also its residue at s = 1 (conjecturally equal to
the Siegel-Veech constant)? Is it possible to use Dozier’s uniform of Masur’s theorem to deduce uniform
convergence of E(x, s)? Is it possible to use the result of NRW to meromorphically extend E(x, s) to
every y 2 Hx and almost every x?

The an answer to the first question would lead to meromorphic continuation outside possible poles by
the method of de Verdiere/ Goldfeld-Sarnak discussed in Section 11.

9. Appendix: Some complex analysis

9.1. Mellin transform. [Following Bergeron: The spectrum of hyperbolic surfaces]

Proposition 9.1. Let � : R ! R+ continuous, its Mellin transform is defined by

 (s) =

ˆ 1

0
 (y)ys�1dy, s 2 C.

Suppose  (s) is absolutely convergent for some s0. Then it is absolutely convergent on some half strip
R[a, b] =def {s 2 C : a < Re s < b} containing s0. The inverse formula

�(y) =
1

2⇡i

ˆ
(c)
 (s)y�sds.
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holds for any � 2 R[a, b], and the notation (�) means to integrate along the vertical line {c+ ir : r 2 R}.

Proof. Assume that  (s0) is absolutely convergent, and consider the following splitting:

|
ˆ 1

0
 (y)ys�1dy| 

ˆ 1

0
| (y)|yRe s�1dy =

ˆ 1

0
| (y)|yRe s�1dy +

ˆ 1

1
| (y)|yRe s�1dy.

The first integral is monotonically decreasing in Re s, where as the second one is monotonically increasing,
so that they converge on R[Re s0,1) and R[0,Re s0] respectively. Varying s0 among the the domain
of absolutely convergence, we see that this domain is indeed a half-strip. For the inverse formula, let
s = � + ir 2 R[a, b]. We wish to reduce to the Fourier inverse formula. Substitute y = et, then

 (s) =

ˆ 1

�1
 (et)e(s�1)t(etdt) =

ˆ 1

�1
 (et)estdt =

ˆ 1

�1
 (et)e�teirtdt = c �(r)

for

 �(t) =  (et)e�t.

Absolute convergence implies  � 2 L1 and the Fourier transform is defined. Fourier inversion formula
(which applies since  � 2 L2 by continuity!) reads now

 �(t) =
1

2⇡i

ˆ 1

�1
 (s)e�irtdt =

1

2⇡i

ˆ 1

�1
 (s)e�irtdt

so that

 (et) =
1

2⇡i

ˆ 1

�1
 (s)e��t�irtdt =

1

2⇡i

ˆ 1

�1
 (s)(et)�sdt

which is the claimed Mellin transform. ⇤

9.2. Convexity principles.

Lemma 9.2.

 U (s) =

8
<

:

s�1 +O(U�1), as U ! 1
O
✓

1
|s|

⇣
U

1+|s|

⌘k◆
, as |s| ! 1

for any k > 0.

Proof. For k 2 N, partial integration gives immediately that

 U (s) =

ˆ 1

0
 U (y)y

s�1dy = O
 

1

|s|

✓
U

|s|

◆k
!
.

where I replaced (1 + |s|) with |s| since we care for this bound as s ! 1. Introducing constants for the
O(·) notation,

|f(s)|  ckU
k|s|�(k+1).

A convex combination for k and k + 1 gives, for any t 2 [0, 1]

|f(s)|  tckU
k|s|�(k+1) + (1� t)ck+1U

k+1|s|�(k+2) = Uk|s|�(k+1) (tck + (1� t)ck+1U/|s|)

We can therefore extend the bound to arbitrary n = k + ", if we can find t such that

tck + (1� t)ck+1U/|s|  U"/|s|".

Solving for t,

t  U"/|s|" � ck+1U/|s|
ck � ck+1U/|s|

Thus, for su�ciently large s, this expression is ensured to be positive (since ck+1U/|s| is very small) ,

and to be less then one (since U"/|s|"/ck is very small). Setting t = U"/|s|"�ck+1U/|s|
ck�ck+1U/|s| provides

|f(s)|  Uk+"|s|�(k+"+1).

for s su�ciently large (depending on " and U). ⇤
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Proposition 9.3 (Phragmen-Lindeloef-Principle). Let f(s) be holomorphic on R[�1,�2] \ {Im(s) > c}
satisfying the following asymptotics:

f(� + it) = O(et
↵

) � 2 [�1,�2] for some ↵ > 0

f(� + it) = O(tM ) � = �1,�2 for some M > 0

then in fact
f(� + it) = O(tM ) � 2 [�1,�2]

uniformly in � 2 [�1,�2].

Proof. We wish to use the maximum modulus principle, which states that a holomorphic map on a
domain of C attains it maximum on the boundary. Define B[a, b] = R[�1,�2] \ {a  Im(s)  b} to be a
rectangle. We start by noting that for fixed [�1,�2], there is ✓0 = ✓(�1,�2) such that for polar-coordinates
s = rei✓, ✓, ✓ stays uniformly close to ✓0 for all s 2 B[a,1] only depending on a. Let m > ↵ such that
cosm✓0 is close to �1. It su�ces to proof the proposition for f replaced by f(s)s�M . Fix " > 0 and let
g"(s) = f(s)e"s

m

. By assumption on f , there exists t0 such that

|g"(s)| ⌧ et
↵+"rm cosm✓ s 2 B[t0,1]

As r  t, m > ↵, ✓ ⇠ ✓0, there is t" with

|g"(s)|  1 s 2 B[t",1]

Using the second growth assumption, we deduce that |g"(s)| is bounded on the boundary of B[t0, t"],
with implicit contants only depending on f . By the maximum modulus principle,

|f(s)| ⌧ e�"r
m cosm✓

for any s 2 B[t0, t"]. Letting "! 0 (and thus t" ! 1), |f(s)| ⌧ 1 for any s 2 B[t0,1], what was to be
proven. ⇤
Lemma 9.4 (The shifting contour argument). Let � be smooth and compactly supported. The formula

�(y) =
1

2⇡i

ˆ
(c)
 (s)y�sds.

is independent of (c), and holds for any c.

Proof. By absolute convergence, we may apply the dominated convergence theoreom to justify in-
terchanging integral and di↵erentiation to see that  (s) is holomorphic. From Lemma 9.2,  (s) =
O((1 + |s|)�k) for any k,

´
(c) y

s (s)ds is absolutely convergent for any c. Since ys (s) is holomorphic,
Cauchy’s theorem states that ˆ

B[�T,T ]
ys (s) = 0.

We split the integral over
´
B[�T,T ] into 4 integrals. Applying the lemma again, the horizontal sides are

dominated again by
´ �2

�1
yt(1 + t+ iT )�kdt going to zero for k su�ciently large. Taking T ! 1,

0 = lim
T

ˆ
B[�T,T ]

ys (s) =

ˆ
(�1)

ys (s)ds�
ˆ
(�2)

ys (s)ds

⇤

10. Appendix: Counting with Non-abeliean Harmonic Analysis

Let ⇢ be any unitary representation of G and � denote the regular representation of G on L2(G). They
extend to ⇤representations of L1(G), so that �(f) simply acts by convolution on L2(G). An important
notion is that of weak containment � < ⇢ of two representations. Say that � < ⇢ if k�(f)k  k⇢(f)k for
any f 2 L1(G). Weak containment can be rephrased in terms of matrix coe�cents.

Theorem 10.1. Let (⇢, H) be a unitary cyclic representation of G and v 2 H. Then if g 7! h⇢(g)v, viH
is in L2+"(G) for every " > 0 then ⇢ < �.

Decompose G = KP and P = AN . Let ⌅(g) =
´
K
�(gk)�1/2dk is the Harish-Chandra function and

� is the modular function defined by dg = dkdp = �(a)dkdadn.

Theorem 10.2 (CHH). Let (⇢, H) be a unitary cyclic representation of G and assume ⇢ < �. Then for
v, w K-eigenvectors in H

|h⇢(g)v, wi|  ⌅(g)kvkkwk



16 VEECH: COUNTING WITH RATES

In terms convolution it has the following formulation. Here it becomes important to know that
⌅ 2 Lq(G) for any q > 2.

Theorem 10.3 (Kunze-Stein, Cowling?). Let p 2 [1, 2) and f 2 L1(G) \ Lp(G). Then the operator
bound of the convolution action of f on L2(G) satisfies

kf ? 'k2  k⌅kqkfkpk'k2
where q is the adjoint of p.

As remarked, this bound is true for any representation weakly contained in the regular representation.
We call a representation tempered if its matrix coe�cients are in L2+"(G). For a representation for

which knows Lq integrability for some q > 2k we still have the statement of 10.2 for ⌅ replaced by ⌅1/k

[Corollary, CHH]. See Nevo, Gorodnik-Nevo for a more detailed discussion on this transfer principle.
Call such a q the integrability exponent of representation

We see from Theorem 10.3 the following convolution bound for �t the uniform probability measure
supported on Bt, where we consider ⇢ the action on L2

0(G/�) known to have finite integrability exponent.

Theorem 10.4 (Gorodnik-Nevo). For any  2 L2
0(G/�)

k�t ?  k2 ⌧ mG(Bt)
� 1

q k k2
A outline the duality principle for the counting problem. Let ⇡ be the projection of compactly

supported funtions on G to G/�,

⇡f (g�) =
X

�2�

f(g�)

Then

|g� \Bt| = ⇡
Bt
(g�) =

X

�2�

Bt
(g�)

shall allow count � \ Bt for a family of sets Bt ⇢ G. We relaxed the counting problem to counting for
arbitrary g�. For g� close to � we find similar asymptotics. Call Bt Hoelder admissable (Def 1.2 GN) if

BG
" BtB

G
" ⇢ Bt+c"a and mG(Bt+")  (1 + c"a)mG(Bt).

Admissability is simply an assumption on the wellroundedness of the sets Bt. We see that dilated balls are
Hoelder admissable, but note that the first condition does not allow for cones in G. One can allow oneself
to such restrictive shapes by adding parameters on Bt1,...,tn coming from various group decompositions,
see GN Chapter 8 for Cartan and HN for Iwasawa. We discuss proofs of wellroundedness in Section 3.1
and Section 3.4. In the context of counting saddle connections also NRW. For a general famility of
functions ft on G one wishes to have a bound of the form

⇡ft(g�) = (1 +O(�("))⇡ft+↵(")
(�)

for some positive decreasing functions ↵,�.
Back to ft = Bt

we may average against �" a dirac approximation of the identity the G,

h⇡
Bt�"

,�"iG  (1 +O("))|� \Bt|  (1 +O("))h⇡
Bt+"

,�"iG.

This viewpoint was iniated by Bartels, DRS, EM and is developed to great extend by GN. Since the
inner product can be rewritten as non-normalized convolution �t ?  "

h⇡ft ,�"iG =

ˆ
G

⇡ft(g�)�"(g)dg =
X

�

ˆ
G

ft(g)�"(g�
�1)dg = ft ? ⇡�"

(g),

whose variation has polynomial decay, from which by a Borel-Cantelli argument one gets almost all
pointwise counting of |g� \ Bt|. Homogenity implies everywhere counting. See NRW for a related
discussion on a non homogeneous space.

Theorem 10.5 (Gorodnik-Nevo). For admissable (defined slightly di↵erent) Bt,

|� \Bt| =
mG(Bt)

mG/�(G/�)
+O(mG(Bt)

�⇤)

Remark 10.6. One can improve the exponent in Theorem 10.5 if the sets are bi-K invariant.
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11. Appendix: Eisensteinseries: Meromorphic continuation to the >1/2-strip

It is possible to avoid deep spectral inputs such as Theorem 2.4 and even give up apriori knowl-
edge of the meromorphic continuation of E(z, s) to the complex plane. We follow Truelsen [Uniform
equidistribution] for this exposition.

We will use a di↵erent Casimir operator.

CEm(g, s) = (s(s� 1)� 5

4
m2)Em(g, s),

for the Casimir operator C given in coordinates g = n(x)a(y)k(✓) by

C = y2
✓

d2

dx2
+

d2

dy2

◆
+ y

d2

dxd✓
+

5

4

d2

d✓2

It will also be important to use smooth truncations.

Definition 11.1 (Truncated Eisenstein Series 8). Let h : R+ ! R with h(y) = 0 for y < A and h(y) = 1
for y > A+ 1.

Fm(g, s) = Em(g, s)� h(y)yse(i✓m)

Lemma 11.2.

CFm(g, s) = (s(s� 1)� 5

4
m2)Fm(g, s)�Hm(g, s)

where

Hm(g, s) = e(i✓m)(h00(y)ys+2 + 2sh0(y)ys+1)

Proof. Take derivatives twice.9 ⇤
11.0.1. Polynomial growth in L2 and meromorphic continuation.

Lemma 11.3. Let s = � + it then

kHm(g, s)k22 = O(A2�+2 + t2A2�).10

Proof. Observe that h0,h00 are supported on y 2 [A,A+ 1] and uniformly bounded in the parameter A.
We have dg = 1

y2 dydxd✓, so that

kHm(g, s)k22 ⌧
X

`=1,2

|s2�`|2
ˆ A+1

A

|ys+`|2 dy
y2

But each term individually isˆ A+1

A

|ys+`|2 dy
y2

=

ˆ A+1

A

y2�+2` dy

y2
=

1

2� + 2`� 1

��(A+ 1)2�+2`�1 �A2�+2`�1
�� = O(A2�+2`�2).

⇤
Lemma 11.4. 11 For |t| � 1,

kFm(·, s)k2 =
1

(2� � 1)|t|O
⇣
A�
p
A2 + t2

⌘
.

Proof. Let

R(s) = (C � s(1� s) +
5

4
m2)�1

be the resolvent. The meromorphic continuation of R(s) for � > 1
2 and holomorphicity of H(g, s) implies

in particular meromorphic continuation of Fm(g, s), since

Fm(g, s) = R(s)(C � s(s� 1) +
5

4
m2)Fm(g, s) = �R(s)Hm(g, s)

8In contrast to Kubota, here a smooth truncation is considered. This allows to conclude L2 bounds with respect to the
s parameter by a method of De Verdiere (Pseudo-Laplaciens II) and Goldfeld-Sarnak (Sums of Kloosterman sums) that
has been applied in Truelsen and Risager-Rudnick for closely related counting resp. equidistribution problem.

9Note the misprint in the formula of H in both Truelsen and Risager-Rudnick. The factor s in the term 2sh0(y)ys+1

was forgotten. In particular, this will lead to a worse pointwise bound on Fm(g, s) below.
10Note that Truelsen confusingly let T = A. Since Hm measures failure of square integrability, it is clear that it has to

go to infinity as A ! 1, which leads to useless bounds if T = A.
11Either finish proof for |t|  1 citing the spectral properties of EM in MS or restrict attention to m = 0.
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The resolvent operator bound satisfies

kR(s)k =
1

dist(s(s� 1)� 5
4m

2, spec(C))
 1

Im (s(1� s)� 5
4m

2)
=

1

(2� � 1)|t| .

Combining this with the previous lemma on the L2 bound of Hm, we have for |t| � 1,

kFm(·, s)k2  kR(s)kk(C � s(1� s) +
5

4
m2)Fm(·, s)k2 =

1

(2� � 1)|t|O
⇣
A�
p
A2 + t2

⌘
.

⇤

Lemma 11.5. It holds 12

Ress=1E0(g, s) = Ress=1F0(g, s)

Proof. The formula Fm(g, s) = Em(g, s)� h(y)yse(i✓m) gives also analytic continuation of Em(g, s) for
Re s > 1/2, whose residue at 1 we know (to be the volume). But holomorphy of h(y)yse(i✓m) in this
range implies that the residue of Fm(g, s) agrees with that of Em(g, s). ⇤

11.0.2. Sobolev Embedding.

Lemma 11.6.

sup
g2⌦

|Fm(g, s)| =
�
m2/t+ t

�
O
⇣
A�
p

A2 + t2
⌘

Proof. We upgrade the L2 bound to a pointwise bound by means of Sobolev inequality. For that we also
need a bound for kCFm(·, s)k2, but clearly,

kCFm(·, s)k2 
����s(s� 1)� 5

4
m2

���� kFmk2 + kHmk2 =

✓
m2 + t2

(2� � 1)|t| + 1

◆
O
⇣
A�
p
A2 + t2

⌘

For any ⌦ ⇢ G/� compact,

sup
g2⌦

|Fm(g, s)| = O(kFm(g, s)k2 + k�Fm(g, s)k2) =
�
m2/t+ t

�
O
⇣
A�
p
A2 + t2

⌘

⇤

We now again use the approximative inequality 12 but by employment of the truncated integral
representation

X

�1\�

j�(g)
m�U (y(�g)

�1T�1)� h(y)�U (y
�1T�1)e(im✓) =

1

2⇡i

ˆ
(2)

Fm(g, s) U (s)T
sds.

The contour shifting argument, now powered by polynomial growth of Fm and sup-polynomial decay of
 U by Lemma 9.2,

= Ress=1 (Fm(g, s) U (s)T
s) +

1

2⇡i

ˆ
( 1
2+")

Fm(g, s) U (s)T
sds

=
�m,0

V ol(G/�)
(T +O(T/U)(1 +O(1/A))) +

1

2⇡i

ˆ
( 1
2+")

Fm(g, s) U (s)T
sds

Using the pointwise bounds on Fm(g, s) we bound the integral
´
( 1
2+")

Fm(g, s) U (s)T sds. Since

Fm(g, s) = O(
�
m2/t+ t

�
O
�
A�

p
A2 + t2

�
= O(t2A�) for |t| ! 1, we need to take k = 2 + " in order

for  U to counter this growth.
Finally we note that this leads inevitably to a worse error bound. Indeed, the average growth order

from Theorem 2.7 is |E(s)| = (|s|1/2), much sharper then our bound obtained here. This growth is
known for the case of SL2(Z) since �(s) (appearing in the functional equation 8) is a ratio of Gamma
and Zeta functions, see Terras Exercise 3.7.5. It is conjectured to be |E(s)| = (|s|") for any �.

12In Truelsen it is stated that

Ress=1E0(g, s) = Ress=1F0(g, s) +O(1/A),

but as we argued, there’s no error term of the type O(A�1) entering.
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12. Appendix: Variance estimates of the Theta transform

One sees in Theorem 13.1 that the L2-norm of an incomplete Eisenstein series kE( , g)k2 is an
L2(R>0) will be controlled by the Mellin transform of  . We return to the Siegel-Veech transform which
was defined for any f : R2 ! R (and not just radially invariant). Below we describe an analouge
of Theorem 13.1 for it, and serves as kind of Roger’s formula, in particular leading to sharp variance
bounds. We refer to Burton and the original Godement paper in which these ideas are employed. We
shall follow Kelmer-Mohammadi for general �. We adapt to have the action of G on row vectors and
take now a group level view point. We also aim to explain how Theorem 2.7 follows from the weight 0
case, using raising/lowering operators. The Iwasawa decomposition G = NAK. Let P = NA the upper
triangular group. Haar becomes dg = e�tdtdxdk coordinates for g = nxatk with at = diag

�
et/2, e�t/2

�
),

k✓ =
⇥

cos ✓ sin ✓
� sin ✓ cos ✓

⇤
, nx = [ 1 x

0 1 ]. Let Q = MN , M = {±1} = K \ A so that Q\G = M\AK. 13

Coordinates and normalization are given by,ˆ
Q\G

f(g)dg =

ˆ
R

ˆ
M\K

f(atk)e
�tdtdk and

ˆ
G

f(g)dg =

ˆ
Q\G

ˆ
Q

f(qg)dqdg

We now look on the stabilizer �1 = � \ P . For f 2 C1
c (Q\G) (which is �1-invariant) define the theta

function

⇥f (g) =
X

�2�1\�

f(�g).

The following unfolding formula holds

Lemma 12.1. (Lemma 2.1 KM) For any F 2 L2(�\G) and f 2 C1
c (Q\G)ˆ

�\G
⇥f (g)F (g)dg =

ˆ
�1\G

f(g)F (g)dg

One may fold once more and use Q-invariance of f , so that an integral over �1\Q in the right hand
side corresponds to taking the zero’th Fourier coe�cient with respect to the N -action:

(21) h⇥f , F i�\G = hf, F �iQ\G

The Adjoint operator of the Theta-transform is taking the zero Fourier coe�cient. This reflects the
orthogonality of the continuous spectrum containing the image of the incomplete Eisenstein transform
with cusp forms.

Let �s 2 C1(Q\G/K) be  s(natk) = est. Let E(g, s) =
P
�2�1\�  s(�g) the standard Eisenstein

series (with the substitition of variables y = et to our original definition) and

E�(s, g) =

ˆ
E(s, nxg)dx

integrating over �1\Q, or in local variables, R/O�, O� = {x 2 R : nx 2 �1} (the zero’ths fourier
coe�cient of E(s, g)) which satisfies

E�(s, g) =  s(g) + C�(s) 1�s(g)

where C�(s) = �(s) in the notation of the functional equation 8.
Let �m 2 L2(M\K) denote the function �m(k✓) = e2im✓, naturally seen as function on G. A function

on G satisfying �m(gk) = �(g)�m(k) is called a K-eigenfunction of weight m. Let  s,m(g) =  s(g)�m(g).
Let (h, e, f) be the standard sl2(R)-tripel for the adjoint representation of G and define raising and

lowering operators by

a± = h± i(e+ f)

sending weight m-eigenfunctions to m± 1 eigenfunctions. We note here a±�s,m = �2(s±m)�s,m±1 and
the L2-decomposition L2(M\K) =

L
m L2(M\K,m).

Define the non-spherical Eisenstein series for � 2 L2(M\K,m) into K-eigenspaces of weight m,

E(�, s, g) =
X

�2�1\�

 s(�g)�(�g).

Of course, these are precisely the weight m Eisenstein series from Section 2.2.
Then integrating over �1\Q, gives.

13In particular, one should think of f : Q\G ! R as even function on R. To reduce notation, one might just restrict to
a torsion free sublattice, which always exists.
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Proposition 12.2 (KM, Proposition 2.2). For � 2 L2(M\K,m),

E�(�, s, g) = ( s(g) + Pm(s)C(s) 1�s(g))�(g)

and Pm(s) defined in (2.11, KM).

We wish to again assume that � is tempered - i.e. C(s) has no exceptional poles besides 1. In the
general case, these have to be added to the bound below. For arithmetic lattices, one can bound the
poles in terms of the continues contribution. For non-arithmetic one may restrict attention to functions
that allow separability of variables to again deduce such bounds, see KM, Theorem 3.

Proposition 12.3 (Proposition 2.3 KM).

kfk21 ⌧ k⇥fk22 ⌧ kfk22 + kfk21
Here k · k1, k · k2 are with respect to Haar on Q\G, i.e. e�tdtdk.

Sketch of upper bound. An arbitrary function f 2 C1
c (Q\G) can be decomposed into K-eigenfunctions

f =
P

m fm, where fm 2 L2(M\K,m), that is, fm,l(ka) = f̂m(a)�m(k) and

f̂m(a) =

ˆ
K

f(ak)�mdk

is the m0s Fourier coe�cient of f . We have

(22) k⇥fk22 =
X

m

k⇥fmk22

Let f(g) = f(atk) = v(t)�(k) for vt 2 C1
c (0,1) and � = �m then

f(g) =
1p
2⇡

ˆ
R
v̂(r � i�) �+ir(g)�(g)dr

for v̂(r) = 1p
2⇡

´
R v(t)e�irtdt, r 2 C. We note that the variable change from y to et caused to consider

the Fourier transform instead of the Mellin transform. This leads to the integral representation of
Theorem 2.3, formula 9 for these non-spherical Eisenstein series:

(23) ⇥f (g) =
1p
2⇡

ˆ
R
v̂(r � i�)E(�,� + ir, g)dr

Integrating over �1\Q, we get from Proposition 12.2 with a contour shift argument that
ˆ
FO�

⇥f (nak)dn

(24)

= c�(k)

✓ˆ
R
v̂(r � i/2)�1/2+irdr +

ˆ
R
v̂(r � i/2)C(1

2
+ ir)Pm(1/2 + ir) 1/2�irdr + 2⇡Pm(1)v̂(�i)

◆

where the last term is the Residue at s = 1(see equation (2.15) in KM) (that vanishes if m 6= 0.
We now use equation 21, which for F = ⇥f reads

k⇥fk22 = c0
ˆ
K

ˆ
R
f(atk)e

�t

ˆ
FO�

⇥f (nxatk)dxdtdk

Apply this for f = v� with the representation of 24 to get

(25) k⇥fk22 = c00
ˆ
R
|v̂(r � i

2
)|2dr +

ˆ
R
v̂(r � i

2
)v̂(�r � i

2
)C(1

2
+ ir)Pm(

1

2
+ ir)dr + 2⇡Pm(1)|v̂(�i)|2.

Sum over m and apply equation 22 to bound k⇥fk22 for general f .
For each summand m we bound as follows. We note that the kfk1 term only enters through m = 0.

For the first term we have Plancherel:
´
R |v̂(r� i

2 )|2dr =
´
R |v(t)|2e�tdt = kfk22. For the second term, we

call that Pm and C are unitary on the critical line, so that Cauchy-Schwartz reduces this summand to the
first term. For the third summand, i.e. m = 0, we simply have 2⇡|v̂(�i)|2 = |

´
R v(t)e�tdt|2 = kfk21. ⇤
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13. Appendix: Mass-Selberg-Relations and their spectral consequences

13.1. Eisenstein Series III - Spectral discussion. We continue with a discussion on the spectral
theory of the incomplete Eisenstein series (Theorem 2.3). Introduce the Eisenstein transform of a function
f 2 C1(R > 0)0

(Ef)(z) =
1

4⇡

ˆ 1

0
f(r)E(z,

1

2
+ ir)

Theorem 13.1 (Iwaniec Proposition 7.1).

hEf,Egi = 1

2⇡

ˆ
f(r)g(r)dr

This theorem relies on the Maass-Selberg relations of truncated Eisenstein series defined by

ẼY (z, s) = E(z, s)� Im(z)s � �(s) Im(z)1�s

for z 2 F (Y ) = {z : Im z > Y } and ẼY (z, s) = E(z, s) if z 2 F (Y )c. satisfying an exact formula for
the expression hẼY (·, s1), ẼY (·, s2)i (see Iwaniec Proposition 6.8). For s = 1

2 + it, t 6= 0 one obtains in
particular (equation 6.35 Iwaniec) that

hẼY (·, s), ẼY (·, s)i = 1

2s� 1
(�(1� s)Y 2s�1 � �(s)Y 1�2s) + 2 log Y � �0

�
(s)

We note that � is unitary on the critical line, which implies that the L2-norm of ẼY (·, s) is essentially

governed by 2 log Y � �0

� (s). Define M�(T ) =
1
4⇡

´ T
�T

��0

� (
1
2 + it)dt for later use.

Theorem 2.4 is proven by use of Theorem 13.1. Let us first note that the dependence on z in Theo-
rem 2.4 can be made explicit, ˆ T

�T

|E(z,
1

2
+ it)|2dt ⌧ T 2 + Ty�(z)

where y�(z) is the height of z.

Proof of Theorem 1.3, following Iwaniec14 . We only proof it for z fixed, without the refinementO(Ty�(z)).
The rough idea is to apply Theorem 13.1 for f(r) = g(r) = [�T,T ](r)E(z, 1

2 + ir). To make things work,
one actually takes g = h(r)E(z, 1

2+ir), where h comes from the following: Recall the following fact about
the spectral theory of the Laplacian on H: Any eigenfunction of eigenvalue � = s(1�s), s = 1

2 + it, t 2 C
is an eigenfunction for integral operators Lk of point pair invariants k(z, w) (i.e. k(gz, gw) = k(z, w)),
where,

Lkf(w) =

ˆ
H
k(z, w)f(z)dz.

Thus if �f = �f , there is hk(s) such that Lkf = hk(t)f . h is called Selberg-Harish-Chandra-transform.
Since h is independent of f , we may take f = ys to get the integral representation

´
H k(z, w)y(z)sdz =

h(t)ys. We let k(z, w) = B�(w)(z) where B�(w) is the ball of hyperbolic volume �. � is small and will
be taken to be 1/T 2. For s = 0, we find in particular that h(i/2) =

´
H k(z, w)dz = �. A calculation (to

check) shows that � ⌧ h(t) ⌧ � for any |s| ⌧ ��1/2.
Let f(z) =

P
�2� k(�w, z) the automorphic kernel associated to k. We find

kfk2L2(H\�) =
X

�0,�

ˆ
H\�

k(�z, w)k(�0z, w)dµ(z) =
X

�

ˆ
H
k(z, w)k(�z, w)dz

We note that the integrant is positive only if both w and �w is inside the � ball B�(z). For � su�ciently
small, this requires � = id, thusˆ

H\�
k(z, w)k(�z, w)dµ(z) =

ˆ
H
k(z, w)2dz = �.

As mentioned earlier, we now take g = h(r)E(z, 1
2 + ir), use first unfolding then interchange integrals

to see

hF,Egi =
ˆ
H
k(z, w)Eg(z)dz =

ˆ 1

0
g(r)(LkE(·, 1

2
+ ir))(w)dr

so Eg is the orthogonal projection of F to Eg. Since E is an eigenfunction,ˆ 1

0
g(r)(LkE(·, 1

2
+ ir))(w)dr =

ˆ 1

0
g(r)h(r)E(w,

1

2
+ ir)dr = kgk2 = kEgk2
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By Cauchy-Schwartz therefore kEgk  kFk. Finally,

ˆ T

�T

|E(z,
1

2
+ ir)|2dr ⌧

ˆ T

�T

����
h(r)

�

����
2

|E(z,
1

2
+ it)|2dr  ��2khEk2 = ��2kEgk2  ��2kFk2 = ��1 = T 2

⇤

The Eisenstein series admit a Fourier expansion (Iwaniec, equation 8.2) E(z, s) = ys + �(s)y1�s +P
n 6=0 �(n, s)Ws(nz) which by Theorem 2.4 satisfies

´ T
�T

P
n 6=0 |�(n, s)Ws(nz)|2dt ⌧ T 2 + yT. We shall

see this fact again in Theorem 14.4.
Using these estimates in combination with Selberg’s trace formula one can deduce (equation 10.13

Iwaniec) M�(T ) ⌧ T 2 and therefore

Theorem 13.2. ˆ T

�T

kẼY (·, 1
2
+ it)k2 ⌧ T 2

Remark 13.3. This estimate is in fact valid for any Re s � 1
2 , see Sarnak, Horocycles.

This is the spectral input for Sarnak’s proof of the e↵ective equidistribution of horocycles. We note
that by the strategy of Duke-Rudnick-Sarnak and Eskin-Mcmullen, one can obtain a polynomial error
term count by employing precicely this fact. We come back to this in Chapter 3. It is possible to shorten
this dynamical argument of counting as we show in ??. We see that the argument boils down to the
same reason as in the proof of Theorem 2.8.

14. Appendix: Previous work on closed Horocycles

14.1. Proof of equidistribution of low horocycles. We discuss the two approaches to Theorem 3.3.
Let again ⌫y = ⌫t = at⇤mY orbit measure of a closed horocycle of length t = 1/y

1
2 . The Rankin-

Selberg method has been suggested by Zagier [Eisenstein Series and Rieman-Zeta-Function] for SL2(Z).
This has been carried through by Sarnak [Horocycles] for general �. We will take the Mellin transform
E(⌫)(s) of ⌫y. As in equation 7 for the counting function we shall get an integral representation involving
integration against Em(g, s) defined in 16. The second argument holds for for K-invariant functions, but
strengthended to hold on short segments and quantifies a result of Heyhal. We finish on a discussion on
mixing.

14.2. Zagier-Sarnak’s argument. In local coordinates (x, y, ✓), ⌫y(f) =
´ 1
0 f(x, y, 0)dx. Now take

(measure valued) mellin transform

E(⌫•)(s) =

ˆ 1

0
⌫yy

�s�2dy

Let f(x, y, ✓) =
P

f̂(n, z)ein✓ the Fourier decomposition along K. Its fourier coe�cient, as function
on H = G/K that is function of weight n with respect to � satisfying f̂(n, �z) = ei2n arg (cz+d)f̂(n, z).
Integrating f against E(⌫•)(s) gives

E(⌫•)(s)(f) =
X

n

ˆ
�\H

f̂(n, z)En(z, s)dz

and by Mellin inversion ⌫y = 1
2⇡

´
(c) E(⌫•)(s)y�sds for any c > 1 and so

⌫y(f) =
1

2⇡

ˆ
(c)

 
X

n

ˆ
�\H

f̂(n, z)En(z, s)y
sdz

!
ds

To show that
⇣P

n

´
�\H f̂(n, z)En(z, s)y�sdz

⌘
is absolutely integrable, one argues by partial integra-

tion with the Laplacian, see equation 20. The spectral bound of the Eisenstein series comes again from
Theorem 13.2. To allow for truncated Eisenseries, one uses that f is compactly supported (or more
generally, with fast decay in the cusp). Shifting to c to the critical line we see the t�1 = y1/2 remainder
term appearing, the Theorem follows after showing that the residue is m�\G(f) (the integral of f against
trivial eigenfunction).

Remark 14.1. Close the cycle and add discussion how counting implies equidistribution? Probably
based on 21.
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14.3. Strombergssen. Let D = �y2(@2x+@
2
y) with eigenfunctions {�i} (but no cusp forms among them)

and S(f) = kfk2 + kDfk2.

Theorem 14.2. Let f 2 L2(�\H) be smooth and y
1
2  b� a  1.

1

b� a

ˆ b

a

f(x+ iy)dx = m�\H(f) +O
 
S(f)y

1
2�"

b� a

!

Proof. There is a spectral decomposition (with continuous part coming from 11 in Theorem 2.3).

f(z) =
X

dm�m(z) +

ˆ
g(R)E(z,

1

2
+ iR)dR

and

Theorem 14.3.

E(z,
1

2
+ iR) = y

1
2+iR + �(

1

2
+ iR)y

1
2�iR +

X

n 6=0

cn(R)
p
yKiR(2⇡|n|y)e(nx)

so that

1

b� a

ˆ b

a

E(z,
1

2
+ iR) = y

1
2+iR + �(

1

2
+ iR)y

1
2�iR +

1

b� a

X

n 6=0

cn
p
yKiR(2⇡|n|y)

e(nb)� e(na)

2⇡in
.

and is Theorem 12.2 for [a, b] = [0, 1].

Theorem 14.4. (Proposition 4.1 Strombergssen) The Fourier coe�cients cn satisfy

X

n<N

|cn|2 = O
✓
e⇡R(N +R))!(R) + log(

2N

R+ 1
+R)

◆

uniformly for any N and R where !(R) = ��0

� (
1
2 + iR) from Section 13.1.

The spectral input is Theorem 13.2.
Combined with known asymptotics of KiR [4.15 Strombergssen]

(26) KiR(y) = O
⇣
e�

⇡
2 R(R+ 1)�1/3+"y�"min (1, e

⇡
2 R�y)

⌘

one has

Theorem 14.5 (Proposition 4.2 Strombergssen).

1

b� a

ˆ b

a

E(z,
1

2
+ iR) = O(y1/2�")

 
1 +

(1 +R)1/6+"
p
!(R)

b� a

!

To bound therefore the continuous part of 1
b�a

´ b
a
f(x + iy)dx, we integrate the last formula against

g(R), which is bounded by the arguments entering Theorem 2.8. One obtains the integrability of g(R)
from nowing that Df has also a spectral decomposition with fourier coe�cient a function of g(R) times
a polynomial in R. The discrete part is treated similarly. ⇤

14.4. Adaption to Counting. Of course, the proof of Theorem 14.2 in particular implies to an Incom-
plete Eisenstein transform. We pick up at trying to bound 14,

´
( 1
2 )
E(g, s) U (s)T sds in terms of U . In

view of Theorem 14.3 we wish to give a bound for
P

n 6=0 cn(R)
p
yKiR(2⇡|n|y)e(nx) in s - which can be

collected from equation 26 and Theorem 14.4. One obtains O(R
p
!(R)) for some  � 0. With the

super-polynomial decay of  U (s) from Lemma 9.2 one can proceed as in Theorem 2.8.

14.5. Mixing. Equidistribituion of horocycles on �\G can also be obtained by mixing. This method
also allows to consider pieces of horocycles on cocompact lattices or closed horocycles [Venkatesh] and
restriction to short segments [Kelmer Kontorovich, Shears].

14.6. non-closed orbit on non-uniform lattices. Reference: Strombergssen [Deviation], Flaminio-
Forni

14.7. Epsilon discripancy. Strombergssen losses an ✏. FF log2
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